Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 12;71(Pt 12):m261–m262. doi: 10.1107/S2056989015022574

Crystal structure of 8-iodo­quinolinium tetra­chlorido­aurate(III)

Benard O Onserio a, Sem Raj Tamang a, James D Hoefelmeyer a,*
PMCID: PMC4719864  PMID: 26870455

Abstract

The structure of the title salt, (C9H7IN)[AuCl4], is comprised of planar 8-iodo­quinolinium cations (r.m.s. deviation = 0.05 Å) and square-planar tetra­chlorido­aurate(III) anions. The asymmetric unit contains one 8-iodo­quinolinium cation and two halfs of [AuCl4] anions, in each case with the central AuIII atom located on an inversion center. Inter­molecular halogen–halogen contacts were found between centrosymmetric pairs of I [3.6178 (4) Å] and Cl atoms [3.1484 (11), 3.3762 (13), and 3.4935 (12) Å]. Inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonding is also found in the structure. These inter­actions lead to the formation of a three-dimensional network. Additionally, there is an intra­molecular N—H⋯I hydrogen bond between the aromatic iminium and iodine. There are no aurophilic inter­actions or short contacts between I and Au atoms, and there are no notable π-stacking inter­actions between the aromatic cations.

Keywords: crystal structure, 8-iodo­quinolinium cation, tetra­chlorido­aurate anion, salt structure

Related literature  

There are only two reported structures containing the 8-iodo­quinolinium cation, viz. 8-iodo­quinolinium chloride dihydrate (Son & Hoefelmeyer, 2008a ) and 8-iodo­quinolinium triiodide tetra­hydro­furan solvate (Son & Hoefelmeyer, 2008b ). Recently, the zwitterionic 8-iodo­quinoline N-oxide was also reported (Hwang et al., 2014).graphic file with name e-71-0m261-scheme1.jpg

Experimental  

Crystal data  

  • (C9H7IN)[AuCl4]

  • M r = 594.82

  • Triclinic, Inline graphic

  • a = 7.6299 (5) Å

  • b = 7.8609 (5) Å

  • c = 11.7125 (7) Å

  • α = 80.160 (1)°

  • β = 78.143 (1)°

  • γ = 85.178 (1)°

  • V = 676.52 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 13.92 mm−1

  • T = 100 K

  • 0.16 × 0.11 × 0.04 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.174, T max = 0.573

  • 6855 measured reflections

  • 2482 independent reflections

  • 2407 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.016

  • wR(F 2) = 0.040

  • S = 1.04

  • 2482 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.19 e Å−3

  • Δρmin = −0.94 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrea et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015022574/wm5236sup1.cif

e-71-0m261-sup1.cif (212.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022574/wm5236Isup2.hkl

e-71-0m261-Isup2.hkl (198.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022574/wm5236Isup3.rtf

x y z x y z x y z x y z x z x y z x y z . DOI: 10.1107/S2056989015022574/wm5236fig1.tif

The expanded asymmetric unit of the crystal shown with inter­molecular halogen⋯halogen contacts and hydrogen bonds as dashed lines. [Symmetry codes: (i) 1 − x, 2 − y, 2 − z; (ii) 2 − x, −y, 1 − z; (iii) 1 − x, −1 − y, 1 − z; (iv) −x, −y − 1, −z; (v) x + 1, y + 1, z + 1; (vi) x + 1, y + 1, z; (vii) −x + 2, −y, −z + 1.]

. DOI: 10.1107/S2056989015022574/wm5236fig2.tif

The centrosymmetric unit cell of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

. DOI: 10.1107/S2056989015022574/wm5236fig3.tif

Examination of the nearest distances (Å) between iodine and Au—Cl bond centroids. These distances are beyond the sum of the van der Waals radii of the atoms.

CCDC reference: 1438910

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H99⋯Cl3i 0.80 (5) 2.62 (5) 3.287 (3) 142 (4)
N1—H99⋯I1 0.80 (5) 2.81 (5) 3.264 (3) 118 (4)
C2—H2⋯Cl1ii 0.93 2.79 3.493 (4) 133
C3—H3⋯Cl1iii 0.93 2.81 3.722 (4) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Purchase of the X-ray diffractometer was made possible by funding from the National Science Foundation (grant No. EPS-0554609).

supplementary crystallographic information

S1. Synthesis and crystallization

In a 4 ml vial, HAuCl4·3H2O (0.12 g, 0.33 mmol), 8-iodo­quinoline (0.10 g, 0.39 mmol) and aceto­nitrile (2 ml) were combined and sonicated for 30 minutes. The 4 ml vial was placed in a 20 ml vial with 5 ml di­ethyl­ether. Diffusion of the ether vapor into the solution within the smaller vial gave yellow-green crystals, mostly with a cuboid-like form.

S2. Refinement

C-bound H atoms were placed in ideal positions and refined as riding atoms (C—H = 0.93 Å; Uiso(H) = 1.2Ueq(H)). The H atom bound to the N atom was located from a difference map and refined freely. The highest remaining electron density peak was located 0.20 Å from H6. A transmission factor of 0.62 was calculated using the ratio of Tmin (0.4593) to Tmax (0.7452) taken from the absorption correction output file, whereas experimental Tmin (0.174) and Tmax (0.573) give a transmission factor of 0.30.

Figures

Fig. 1.

Fig. 1.

The expanded asymmetric unit of the crystal shown with intermolecular halogen···halogen contacts and hydrogen bonds as dashed lines. [Symmetry codes: (i) 1 − x, 2 − y, 2 − z; (ii) 2 − x, −y, 1 − z; (iii) 1 − x, −1 − y, 1 − z; (iv) −x, −y − 1, −z; (v) x + 1, y + 1, z + 1; (vi) x + 1, y + 1, z; (vii) −x + 2, −y, −z + 1.]

Fig. 2.

Fig. 2.

The centrosymmetric unit cell of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 3.

Fig. 3.

Examination of the nearest distances (Å) between iodine and Au—Cl bond centroids. These distances are beyond the sum of the van der Waals radii of the atoms.

Crystal data

(C9H7IN)[AuCl4] Z = 2
Mr = 594.82 F(000) = 536
Triclinic, P1 Dx = 2.920 Mg m3
a = 7.6299 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.8609 (5) Å Cell parameters from 5508 reflections
c = 11.7125 (7) Å θ = 2.6–25.6°
α = 80.160 (1)° µ = 13.92 mm1
β = 78.143 (1)° T = 100 K
γ = 85.178 (1)° Plate, light green
V = 676.52 (7) Å3 0.16 × 0.11 × 0.04 mm

Data collection

Bruker APEXII CCD diffractometer 2407 reflections with I > 2σ(I)
φ and ω scans Rint = 0.024
Absorption correction: multi-scan (SADABS; Bruker, 2009) θmax = 25.4°, θmin = 1.8°
Tmin = 0.174, Tmax = 0.573 h = −9→9
6855 measured reflections k = −9→9
2482 independent reflections l = −14→14

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.016 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.019P)2 + 0.5573P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
2482 reflections Δρmax = 1.19 e Å3
152 parameters Δρmin = −0.94 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.54637 (3) 0.86196 (3) 0.88748 (2) 0.01671 (7)
Au2 0.0000 0.0000 0.0000 0.01009 (6)
Au1 0.5000 0.0000 0.5000 0.00870 (6)
Cl3 0.07524 (11) 0.00792 (10) −0.20000 (7) 0.01714 (17)
Cl2 0.20893 (10) 0.01686 (10) 0.47699 (7) 0.01590 (17)
Cl4 0.00376 (12) −0.29552 (11) 0.02554 (8) 0.01672 (18)
C8 0.5841 (5) 0.6220 (4) 0.8290 (3) 0.0137 (7)
C7 0.4426 (5) 0.5185 (5) 0.8453 (3) 0.0167 (8)
H7 0.3321 0.5507 0.8887 0.020*
C6 0.4621 (5) 0.3624 (5) 0.7968 (3) 0.0201 (8)
H6 0.3655 0.2923 0.8092 0.024*
C5 0.6244 (5) 0.3160 (5) 0.7317 (3) 0.0173 (8)
H5 0.6359 0.2155 0.6982 0.021*
C10 0.7737 (5) 0.4170 (4) 0.7144 (3) 0.0136 (7)
C4 0.9432 (5) 0.3733 (5) 0.6493 (3) 0.0163 (7)
H4 0.9589 0.2741 0.6142 0.020*
N1 0.9009 (4) 0.6662 (4) 0.7494 (3) 0.0146 (6)
C9 0.7541 (5) 0.5716 (5) 0.7656 (3) 0.0134 (7)
Cl1 0.49806 (11) −0.29443 (10) 0.53814 (8) 0.01473 (17)
C3 1.0864 (5) 0.4757 (5) 0.6369 (3) 0.0172 (8)
H3 1.1983 0.4458 0.5942 0.021*
C2 1.0612 (5) 0.6228 (5) 0.6887 (3) 0.0166 (8)
H2 1.1569 0.6925 0.6812 0.020*
H99 0.890 (6) 0.755 (6) 0.776 (4) 0.026 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.01797 (12) 0.01529 (12) 0.01717 (12) 0.00269 (9) −0.00223 (9) −0.00651 (9)
Au2 0.01106 (10) 0.00938 (10) 0.01044 (10) −0.00048 (7) −0.00355 (7) −0.00150 (7)
Au1 0.00681 (9) 0.01063 (10) 0.00881 (10) 0.00010 (7) −0.00208 (7) −0.00155 (7)
Cl3 0.0245 (4) 0.0160 (4) 0.0109 (4) −0.0024 (3) −0.0030 (3) −0.0017 (3)
Cl2 0.0086 (4) 0.0191 (4) 0.0211 (4) 0.0000 (3) −0.0055 (3) −0.0036 (3)
Cl4 0.0233 (4) 0.0104 (4) 0.0166 (4) −0.0010 (3) −0.0040 (4) −0.0020 (3)
C8 0.0163 (17) 0.0134 (17) 0.0117 (17) 0.0026 (14) −0.0041 (14) −0.0028 (13)
C7 0.0180 (18) 0.0184 (18) 0.0124 (17) −0.0002 (14) −0.0022 (14) −0.0001 (14)
C6 0.025 (2) 0.0210 (19) 0.0133 (18) 0.0035 (16) −0.0067 (15) 0.0009 (15)
C5 0.027 (2) 0.0131 (17) 0.0139 (18) −0.0024 (15) −0.0092 (15) −0.0016 (14)
C10 0.0198 (18) 0.0127 (17) 0.0077 (16) 0.0013 (14) −0.0048 (14) 0.0014 (13)
C4 0.0235 (19) 0.0133 (17) 0.0130 (17) 0.0058 (14) −0.0080 (15) −0.0021 (14)
N1 0.0164 (15) 0.0125 (15) 0.0153 (15) 0.0006 (12) −0.0041 (12) −0.0024 (12)
C9 0.0177 (17) 0.0125 (17) 0.0098 (16) 0.0008 (13) −0.0067 (14) 0.0027 (13)
Cl1 0.0150 (4) 0.0115 (4) 0.0176 (4) −0.0005 (3) −0.0037 (3) −0.0014 (3)
C3 0.0138 (17) 0.0234 (19) 0.0117 (17) 0.0055 (15) −0.0005 (14) −0.0007 (14)
C2 0.0159 (18) 0.0173 (18) 0.0159 (18) −0.0029 (14) −0.0053 (14) 0.0026 (14)

Geometric parameters (Å, º)

I1—C8 2.093 (3) C6—H6 0.9300
Au2—Cl3 2.2857 (8) C5—C10 1.404 (5)
Au2—Cl3i 2.2857 (8) C5—H5 0.9300
Au2—Cl4i 2.2894 (8) C10—C4 1.407 (5)
Au2—Cl4 2.2895 (8) C10—C9 1.429 (5)
Au1—Cl1ii 2.2817 (8) C4—C3 1.381 (5)
Au1—Cl1 2.2817 (8) C4—H4 0.9300
Au1—Cl2ii 2.2818 (8) N1—C2 1.331 (5)
Au1—Cl2 2.2818 (8) N1—C9 1.360 (5)
C8—C7 1.369 (5) N1—H99 0.80 (4)
C8—C9 1.418 (5) C3—C2 1.377 (5)
C7—C6 1.422 (5) C3—H3 0.9300
C7—H7 0.9300 C2—H2 0.9300
C6—C5 1.371 (5)
Cl3—Au2—Cl3i 180.0 C6—C5—C10 121.4 (3)
Cl3—Au2—Cl4i 90.15 (3) C6—C5—H5 119.3
Cl3i—Au2—Cl4i 89.85 (3) C10—C5—H5 119.3
Cl3—Au2—Cl4 89.85 (3) C5—C10—C4 123.3 (3)
Cl3i—Au2—Cl4 90.15 (3) C5—C10—C9 118.8 (3)
Cl4i—Au2—Cl4 180.0 C4—C10—C9 117.9 (4)
Cl1ii—Au1—Cl1 180.0 C3—C4—C10 120.9 (3)
Cl1ii—Au1—Cl2ii 90.54 (3) C3—C4—H4 119.6
Cl1—Au1—Cl2ii 89.46 (3) C10—C4—H4 119.6
Cl1ii—Au1—Cl2 89.46 (3) C2—N1—C9 123.7 (3)
Cl1—Au1—Cl2 90.54 (3) C2—N1—H99 118 (3)
Cl2ii—Au1—Cl2 180.0 C9—N1—H99 118 (3)
C7—C8—C9 119.9 (3) N1—C9—C8 122.7 (3)
C7—C8—I1 120.2 (3) N1—C9—C10 117.9 (3)
C9—C8—I1 119.8 (3) C8—C9—C10 119.4 (3)
C8—C7—C6 121.0 (3) C2—C3—C4 119.0 (3)
C8—C7—H7 119.5 C2—C3—H3 120.5
C6—C7—H7 119.5 C4—C3—H3 120.5
C5—C6—C7 119.5 (4) N1—C2—C3 120.6 (3)
C5—C6—H6 120.3 N1—C2—H2 119.7
C7—C6—H6 120.3 C3—C2—H2 119.7

Symmetry codes: (i) −x, −y, −z; (ii) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H99···Cl3iii 0.80 (5) 2.62 (5) 3.287 (3) 142 (4)
N1—H99···I1 0.80 (5) 2.81 (5) 3.264 (3) 118 (4)
C2—H2···Cl1iv 0.93 2.79 3.493 (4) 133
C3—H3···Cl1v 0.93 2.81 3.722 (4) 168

Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) −x+2, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5236).

References

  1. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hwang, H., Kim, J., Jeong, J. & Chang, S. (2014). J. Am. Chem. Soc. 136, 10770–10776. [DOI] [PubMed]
  3. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  6. Son, J.-H. & Hoefelmeyer, J. D. (2008a). Acta Cryst. E64, o2076. [DOI] [PMC free article] [PubMed]
  7. Son, J.-H. & Hoefelmeyer, J. D. (2008b). Acta Cryst. E64, o2077. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015022574/wm5236sup1.cif

e-71-0m261-sup1.cif (212.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022574/wm5236Isup2.hkl

e-71-0m261-Isup2.hkl (198.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022574/wm5236Isup3.rtf

x y z x y z x y z x y z x z x y z x y z . DOI: 10.1107/S2056989015022574/wm5236fig1.tif

The expanded asymmetric unit of the crystal shown with inter­molecular halogen⋯halogen contacts and hydrogen bonds as dashed lines. [Symmetry codes: (i) 1 − x, 2 − y, 2 − z; (ii) 2 − x, −y, 1 − z; (iii) 1 − x, −1 − y, 1 − z; (iv) −x, −y − 1, −z; (v) x + 1, y + 1, z + 1; (vi) x + 1, y + 1, z; (vii) −x + 2, −y, −z + 1.]

. DOI: 10.1107/S2056989015022574/wm5236fig2.tif

The centrosymmetric unit cell of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

. DOI: 10.1107/S2056989015022574/wm5236fig3.tif

Examination of the nearest distances (Å) between iodine and Au—Cl bond centroids. These distances are beyond the sum of the van der Waals radii of the atoms.

CCDC reference: 1438910

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES