Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 7;71(Pt 12):o917–o918. doi: 10.1107/S2056989015020794

Crystal structure of ethyl 2-{2-[(1Z)-1-hy­droxy-3-(4-nitro­phen­yl)-3-oxoprop-1-en-1-yl]phen­oxy}acetate

Shaaban K Mohamed a,b, Joel T Mague c, Mehmet Akkurt d, Eman A Ahmed e, Mustafa R Albayati f,*
PMCID: PMC4719879  PMID: 26870526

Abstract

The title compound, C19H17NO7, crystallized in a ratio of about 6:4 of the two possible keto–enol forms. This was observed as disorder over the central C3H2O2 unit. The dihedral angle between the rings is 8.2 (2)°.The mol­ecules pack by C—H⋯O interactions in a layered fashion parallel to (-104).

Keywords: crystal structure, aryl­oxyphen­oxy compounds, herbicides

Related literature  

For the use of aryl­oxyphen­oxy compounds in various herbicidal applications, see: Zhu et al. (2006, 2009); Li (2004); Wang et al. (2004). For the synthesis of the title compund, see: Akkurt et al. (2015).graphic file with name e-71-0o917-scheme1.jpg

Experimental  

Crystal data  

  • C19H17NO7

  • M r = 371.33

  • Monoclinic, Inline graphic

  • a = 4.7818 (10) Å

  • b = 16.260 (3) Å

  • c = 21.948 (5) Å

  • β = 95.933 (3)°

  • V = 1697.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.24 × 0.08 × 0.03 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.60, T max = 1.00

  • 15039 measured reflections

  • 3952 independent reflections

  • 1800 reflections with I > 2σ(I)

  • R int = 0.116

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.194

  • S = 1.00

  • 3952 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b ); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015020794/qm2113sup1.cif

e-71-0o917-sup1.cif (462.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020794/qm2113Isup2.hkl

e-71-0o917-Isup2.hkl (315.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020794/qm2113Isup3.cml

A . DOI: 10.1107/S2056989015020794/qm2113fig1.tif

The title mol­ecule with labeling scheme and 50% probability ellipsoids. Only one location (H4A) of the disordered enol hydrogen is shown. Intra­molecular hydrogen bonds are shown by dotted lines.

a . DOI: 10.1107/S2056989015020794/qm2113fig2.tif

Packing viewed down the a axis. Inter­molecular C—H⋯O hydrogen bonds are shown by dotted lines.

b . DOI: 10.1107/S2056989015020794/qm2113fig3.tif

Packing viewed down the b axis showing the layered structure.

CCDC reference: 1434730

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O5 0.95 2.18 2.796 (4) 122
C16—H16A⋯O3i 0.99 2.35 3.295 (5) 160
O3—H3A⋯O4 0.86 1.69 2.435 (3) 144
O4—H4A⋯O3 0.86 1.62 2.435 (3) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

S1. Comment

Aryloxyphenoxy propionates are an important class of herbicides due to their high efficiency, broad spectrum, low toxicity and good selectivity (Zhu et al., 2006; Zhu et al., 2009). Thus, aryloxy-phenoxy propionate herbicides such as fluazifop-butyl, heloxyfop-methyl, quizalofop-ethyl and cyhalofop-butyl have been developed (Li, 2004), and are widely used to control gramineous weeds. In addition, some aryloxy-phenoxy acetates exhibit good herbicidal activity. For example, two substituted pyrazolo[3,4-d] pyrimidin-4-yloxy phenoxy acetates display considerable activities (Wang et al., 2004), with 100% inhibition against the root growth of Brassica napus L. Based on such facts, we report in this study the synthesis and crystal structural determination of the title compound.

In the title molecule, the dihedral angle between the C1–C6 ring and the mean plane of the central O3, C7, C8, C9, O4 unit is 2.8 (2)° while that between this latter plane and the C10–C15 ring is 8.2 (2)°. The molecule crystallized as a mixture of the two possible keto enol forms. This was observed as disorder over the central C3H2O2 unit. The molecules pack in a layered fashion (Figs. 2 and 3).

S2. Experimental

The title compund was prepared according to our reported method (Akkurt et al., 2015). Suitable crystals were obtained by slow evaporation method of a solution of the title compund in ethanol.

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. From the equivalence of the C7—C8 and C8—C9 bond distances, the near equivalence of the C7—O3 and C9—O4 bond distances and the observance of only one peak attributable to a hydrogen attached to C8 in a difference map, it was concluded that the compound exists as the keto-enol tautomer with the enol hydrogen disordered between O3 and O4. Contoured difference maps calculated in the region between O3 and O4 showed an elongated region of density consistent with this assumption. The two components of the disordered hydrogen (H3a and H4a) were placed in positions consistent with forming intramolecular O—H···O hydrogen bonds and allowed to ride on the respective oxygen atoms.

Figures

Fig. 1.

Fig. 1.

The title molecule with labeling scheme and 50% probability ellipsoids. Only one location (H4A) of the disordered enol hydrogen is shown. Intramolecular hydrogen bonds are shown by dotted lines.

Fig. 2.

Fig. 2.

Packing viewed down the a axis. Intermolecular C—H···O hydrogen bonds are shown by dotted lines.

Fig. 3.

Fig. 3.

Packing viewed down the b axis showing the layered structure.

Crystal data

C19H17NO7 F(000) = 776
Mr = 371.33 Dx = 1.453 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 4.7818 (10) Å Cell parameters from 2496 reflections
b = 16.260 (3) Å θ = 2.3–26.7°
c = 21.948 (5) Å µ = 0.11 mm1
β = 95.933 (3)° T = 150 K
V = 1697.4 (6) Å3 Column, pale yellow
Z = 4 0.24 × 0.08 × 0.03 mm

Data collection

Bruker SMART APEX CCD diffractometer 3952 independent reflections
Radiation source: fine-focus sealed tube 1800 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.116
Detector resolution: 8.3660 pixels mm-1 θmax = 27.9°, θmin = 1.6°
φ and ω scans h = −6→6
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −20→20
Tmin = 0.60, Tmax = 1.00 l = −28→28
15039 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072 Hydrogen site location: mixed
wR(F2) = 0.194 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.4312P] where P = (Fo2 + 2Fc2)/3
3952 reflections (Δ/σ)max < 0.001
245 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 120 sec/frame was used.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. From the equivalence of the C7—C8 and C8—C9 bond distances, the near equivalence of the C7—O3 and C9—O4 bond distances and the observance of only one peak attributable to a hydrogen attached to C8 in a difference map, it was concluded that the compound exists as the keto-enol tautomer with the enol hydrogen disordered between O3 and O4. Contoured difference maps calculated in the region between O3 and O4 showed an elongated region of density consistent with this assumption. The two components of the disordered hydrogen (H3a and H4a) were placed in positions consistent with forming intramolecular O—H···O hydrogen bonds and allowed to ride on the respective oxygen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 1.3713 (6) 0.88831 (19) 0.52969 (13) 0.0660 (9)
O2 1.3341 (6) 0.75575 (19) 0.52420 (12) 0.0568 (8)
O3 0.2970 (5) 0.93367 (15) 0.30167 (11) 0.0469 (7)
H3A 0.1539 0.9368 0.2746 0.070* 0.4
O4 −0.0854 (5) 0.88128 (16) 0.23034 (12) 0.0559 (8)
H4A 0.0513 0.9093 0.2485 0.084* 0.6
O5 −0.0494 (5) 0.63587 (13) 0.28606 (10) 0.0391 (6)
O6 0.3347 (6) 0.58820 (15) 0.37708 (13) 0.0575 (8)
O7 0.1989 (6) 0.45723 (15) 0.36325 (12) 0.0539 (8)
N1 1.2619 (7) 0.8252 (2) 0.50788 (14) 0.0482 (9)
C1 0.5850 (7) 0.8492 (2) 0.36892 (15) 0.0324 (8)
C2 0.7260 (7) 0.9186 (2) 0.39276 (17) 0.0412 (9)
H2 0.6703 0.9715 0.3775 0.049*
C3 0.9464 (8) 0.9116 (2) 0.43836 (17) 0.0451 (10)
H3 1.0410 0.9591 0.4551 0.054*
C4 1.0263 (7) 0.8345 (2) 0.45906 (15) 0.0368 (9)
C5 0.8938 (7) 0.7638 (2) 0.43615 (16) 0.0398 (9)
H5 0.9535 0.7112 0.4510 0.048*
C6 0.6703 (7) 0.7720 (2) 0.39061 (15) 0.0372 (9)
H6 0.5753 0.7244 0.3742 0.045*
C7 0.3471 (7) 0.8596 (2) 0.31935 (15) 0.0321 (8)
C8 0.1895 (7) 0.7929 (2) 0.29482 (15) 0.0329 (8)
H8 0.2333 0.7388 0.3091 0.039*
C9 −0.0329 (7) 0.8058 (2) 0.24920 (15) 0.0331 (8)
C10 −0.2205 (7) 0.7428 (2) 0.21933 (15) 0.0327 (8)
C11 −0.4082 (7) 0.7682 (2) 0.16947 (15) 0.0384 (9)
H11 −0.4063 0.8241 0.1568 0.046*
C12 −0.5941 (7) 0.7148 (2) 0.13854 (16) 0.0440 (10)
H12 −0.7185 0.7339 0.1049 0.053*
C13 −0.6003 (8) 0.6340 (2) 0.15610 (16) 0.0448 (10)
H13 −0.7287 0.5969 0.1347 0.054*
C14 −0.4184 (8) 0.6064 (2) 0.20538 (16) 0.0437 (10)
H14 −0.4233 0.5505 0.2177 0.052*
C15 −0.2297 (7) 0.6604 (2) 0.23651 (15) 0.0353 (8)
C16 −0.0496 (8) 0.5517 (2) 0.30174 (16) 0.0397 (9)
H16A −0.0199 0.5176 0.2656 0.048*
H16B −0.2324 0.5363 0.3160 0.048*
C17 0.1850 (8) 0.5374 (2) 0.35214 (16) 0.0384 (9)
C18 0.4091 (8) 0.4278 (2) 0.41157 (17) 0.0489 (10)
H18A 0.5634 0.4683 0.4186 0.059*
H18B 0.4899 0.3751 0.3990 0.059*
C19 0.2724 (9) 0.4159 (3) 0.46874 (18) 0.0589 (12)
H19A 0.1949 0.4683 0.4812 0.088*
H19B 0.4117 0.3959 0.5013 0.088*
H19C 0.1205 0.3755 0.4615 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0585 (19) 0.076 (2) 0.0572 (19) −0.0132 (17) −0.0234 (15) −0.0046 (17)
O2 0.0511 (18) 0.073 (2) 0.0420 (16) 0.0133 (15) −0.0162 (13) 0.0053 (15)
O3 0.0465 (15) 0.0384 (15) 0.0514 (17) −0.0023 (12) −0.0164 (13) 0.0115 (12)
O4 0.0570 (18) 0.0470 (17) 0.0582 (18) −0.0019 (14) −0.0211 (14) 0.0137 (14)
O5 0.0443 (15) 0.0320 (14) 0.0364 (14) 0.0022 (11) −0.0179 (12) 0.0032 (11)
O6 0.0611 (18) 0.0403 (16) 0.0629 (19) −0.0073 (14) −0.0321 (15) 0.0070 (14)
O7 0.0628 (18) 0.0381 (16) 0.0534 (17) 0.0016 (13) −0.0295 (14) 0.0066 (13)
N1 0.0387 (19) 0.073 (3) 0.0314 (18) −0.0048 (19) −0.0042 (15) −0.0007 (18)
C1 0.0299 (18) 0.037 (2) 0.0298 (18) 0.0020 (16) −0.0013 (15) 0.0016 (16)
C2 0.039 (2) 0.041 (2) 0.042 (2) 0.0028 (17) −0.0036 (18) 0.0011 (17)
C3 0.044 (2) 0.047 (3) 0.042 (2) −0.0021 (19) −0.0090 (18) −0.0069 (19)
C4 0.0300 (19) 0.053 (2) 0.0271 (19) 0.0017 (17) 0.0007 (15) −0.0004 (17)
C5 0.036 (2) 0.045 (2) 0.037 (2) 0.0052 (17) −0.0063 (17) 0.0045 (18)
C6 0.037 (2) 0.039 (2) 0.035 (2) −0.0024 (16) −0.0027 (16) 0.0030 (17)
C7 0.0322 (19) 0.034 (2) 0.0304 (19) 0.0040 (16) 0.0028 (16) 0.0043 (16)
C8 0.0305 (19) 0.036 (2) 0.0309 (19) 0.0050 (15) −0.0027 (15) 0.0032 (15)
C9 0.0340 (19) 0.035 (2) 0.0303 (19) 0.0039 (16) 0.0014 (16) 0.0063 (16)
C10 0.0294 (19) 0.040 (2) 0.0269 (18) 0.0037 (15) −0.0052 (14) −0.0012 (15)
C11 0.0312 (19) 0.046 (2) 0.035 (2) 0.0057 (17) −0.0073 (16) 0.0066 (17)
C12 0.037 (2) 0.058 (3) 0.034 (2) 0.0027 (19) −0.0115 (17) 0.0007 (19)
C13 0.043 (2) 0.051 (3) 0.037 (2) −0.0009 (19) −0.0102 (18) −0.0066 (19)
C14 0.047 (2) 0.042 (2) 0.039 (2) 0.0005 (18) −0.0119 (18) 0.0003 (18)
C15 0.0322 (19) 0.045 (2) 0.0265 (18) 0.0078 (17) −0.0056 (15) −0.0019 (17)
C16 0.040 (2) 0.036 (2) 0.039 (2) 0.0007 (17) −0.0130 (17) 0.0023 (17)
C17 0.045 (2) 0.030 (2) 0.037 (2) 0.0020 (17) −0.0077 (18) 0.0056 (17)
C18 0.052 (2) 0.048 (2) 0.043 (2) 0.006 (2) −0.0136 (19) 0.0080 (19)
C19 0.057 (3) 0.068 (3) 0.048 (3) 0.007 (2) −0.013 (2) 0.000 (2)

Geometric parameters (Å, º)

O1—N1 1.226 (4) C7—C8 1.396 (5)
O2—N1 1.224 (4) C8—C9 1.399 (4)
O3—C7 1.281 (4) C8—H8 0.9500
O3—H3A 0.8600 C9—C10 1.470 (5)
O4—C9 1.311 (4) C10—C15 1.394 (5)
O4—H4A 0.8601 C10—C11 1.404 (4)
O5—C15 1.375 (4) C11—C12 1.371 (5)
O5—C16 1.412 (4) C11—H11 0.9500
O6—C17 1.189 (4) C12—C13 1.371 (5)
O7—C17 1.327 (4) C12—H12 0.9500
O7—C18 1.464 (4) C13—C14 1.390 (5)
N1—C4 1.480 (4) C13—H13 0.9500
C1—C6 1.388 (4) C14—C15 1.387 (5)
C1—C2 1.390 (5) C14—H14 0.9500
C1—C7 1.500 (5) C16—C17 1.510 (5)
C2—C3 1.381 (5) C16—H16A 0.9900
C2—H2 0.9500 C16—H16B 0.9900
C3—C4 1.374 (5) C18—C19 1.486 (5)
C3—H3 0.9500 C18—H18A 0.9900
C4—C5 1.381 (5) C18—H18B 0.9900
C5—C6 1.392 (5) C19—H19A 0.9800
C5—H5 0.9500 C19—H19B 0.9800
C6—H6 0.9500 C19—H19C 0.9800
C7—O3—H3A 112.1 C12—C11—C10 122.0 (3)
C9—O4—H4A 103.8 C12—C11—H11 119.0
C15—O5—C16 117.3 (3) C10—C11—H11 119.0
C17—O7—C18 118.2 (3) C13—C12—C11 120.0 (3)
O2—N1—O1 124.2 (3) C13—C12—H12 120.0
O2—N1—C4 118.4 (3) C11—C12—H12 120.0
O1—N1—C4 117.4 (3) C12—C13—C14 119.9 (3)
C6—C1—C2 119.4 (3) C12—C13—H13 120.1
C6—C1—C7 121.6 (3) C14—C13—H13 120.1
C2—C1—C7 118.9 (3) C15—C14—C13 120.1 (4)
C3—C2—C1 120.6 (3) C15—C14—H14 120.0
C3—C2—H2 119.7 C13—C14—H14 120.0
C1—C2—H2 119.7 O5—C15—C14 121.9 (3)
C4—C3—C2 118.7 (3) O5—C15—C10 117.3 (3)
C4—C3—H3 120.6 C14—C15—C10 120.8 (3)
C2—C3—H3 120.6 O5—C16—C17 108.0 (3)
C3—C4—C5 122.5 (3) O5—C16—H16A 110.1
C3—C4—N1 119.8 (3) C17—C16—H16A 110.1
C5—C4—N1 117.7 (3) O5—C16—H16B 110.1
C4—C5—C6 118.1 (3) C17—C16—H16B 110.1
C4—C5—H5 121.0 H16A—C16—H16B 108.4
C6—C5—H5 121.0 O6—C17—O7 125.6 (3)
C1—C6—C5 120.6 (3) O6—C17—C16 126.7 (3)
C1—C6—H6 119.7 O7—C17—C16 107.7 (3)
C5—C6—H6 119.7 O7—C18—C19 109.0 (3)
O3—C7—C8 122.5 (3) O7—C18—H18A 109.9
O3—C7—C1 115.5 (3) C19—C18—H18A 109.9
C8—C7—C1 122.1 (3) O7—C18—H18B 109.9
C7—C8—C9 120.0 (3) C19—C18—H18B 109.9
C7—C8—H8 120.0 H18A—C18—H18B 108.3
C9—C8—H8 120.0 C18—C19—H19A 109.5
O4—C9—C8 118.2 (3) C18—C19—H19B 109.5
O4—C9—C10 115.0 (3) H19A—C19—H19B 109.5
C8—C9—C10 126.8 (3) C18—C19—H19C 109.5
C15—C10—C11 117.2 (3) H19A—C19—H19C 109.5
C15—C10—C9 125.7 (3) H19B—C19—H19C 109.5
C11—C10—C9 117.0 (3)
C6—C1—C2—C3 −1.1 (5) C8—C9—C10—C15 8.1 (6)
C7—C1—C2—C3 −179.9 (3) O4—C9—C10—C11 7.8 (5)
C1—C2—C3—C4 1.0 (6) C8—C9—C10—C11 −172.5 (3)
C2—C3—C4—C5 −0.2 (6) C15—C10—C11—C12 0.0 (5)
C2—C3—C4—N1 180.0 (3) C9—C10—C11—C12 −179.5 (3)
O2—N1—C4—C3 −177.9 (3) C10—C11—C12—C13 0.0 (6)
O1—N1—C4—C3 2.6 (5) C11—C12—C13—C14 0.1 (6)
O2—N1—C4—C5 2.3 (5) C12—C13—C14—C15 −0.4 (6)
O1—N1—C4—C5 −177.2 (3) C16—O5—C15—C14 4.2 (5)
C3—C4—C5—C6 −0.4 (6) C16—O5—C15—C10 −177.2 (3)
N1—C4—C5—C6 179.4 (3) C13—C14—C15—O5 178.9 (3)
C2—C1—C6—C5 0.5 (5) C13—C14—C15—C10 0.4 (6)
C7—C1—C6—C5 179.2 (3) C11—C10—C15—O5 −178.8 (3)
C4—C5—C6—C1 0.2 (5) C9—C10—C15—O5 0.6 (5)
C6—C1—C7—O3 −177.2 (3) C11—C10—C15—C14 −0.3 (5)
C2—C1—C7—O3 1.6 (5) C9—C10—C15—C14 179.2 (3)
C6—C1—C7—C8 3.6 (5) C15—O5—C16—C17 173.6 (3)
C2—C1—C7—C8 −177.7 (3) C18—O7—C17—O6 2.1 (6)
O3—C7—C8—C9 −0.1 (5) C18—O7—C17—C16 −178.9 (3)
C1—C7—C8—C9 179.1 (3) O5—C16—C17—O6 4.0 (6)
C7—C8—C9—O4 0.5 (5) O5—C16—C17—O7 −175.0 (3)
C7—C8—C9—C10 −179.2 (3) C17—O7—C18—C19 97.7 (4)
O4—C9—C10—C15 −171.6 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8···O5 0.95 2.18 2.796 (4) 122
C16—H16A···O3i 0.99 2.35 3.295 (5) 160
O3—H3A···O4 0.86 1.69 2.435 (3) 144
O4—H4A···O3 0.86 1.62 2.435 (3) 158

Symmetry code: (i) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: QM2113).

References

  1. Akkurt, M., Mague, J. T., Mohamed, S. K., Ahmed, E. A. & Albayati, M. R. (2015). Acta Cryst. E71, o70–o71. [DOI] [PMC free article] [PubMed]
  2. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Li, H. P. (2004). Pestic. Sci. Admin. 25, 28–32.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  7. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  8. Wang, H. Q., Liu, H. & Liu, Z. J. (2004). Chin. J. Org. Chem 24, 1563–1568.
  9. Zhu, X. L., Ge-Fei, H., Zhan, C. G. & Yang, G. F. (2009). J. Chem. Inf. Model. 49, 1936–1943. [DOI] [PubMed]
  10. Zhu, X. L., Zhang, L., Chen, Q., Wan, J. & Yang, G. F. (2006). J. Chem. Inf. Model. 46, 1819–1826. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015020794/qm2113sup1.cif

e-71-0o917-sup1.cif (462.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020794/qm2113Isup2.hkl

e-71-0o917-Isup2.hkl (315.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015020794/qm2113Isup3.cml

A . DOI: 10.1107/S2056989015020794/qm2113fig1.tif

The title mol­ecule with labeling scheme and 50% probability ellipsoids. Only one location (H4A) of the disordered enol hydrogen is shown. Intra­molecular hydrogen bonds are shown by dotted lines.

a . DOI: 10.1107/S2056989015020794/qm2113fig2.tif

Packing viewed down the a axis. Inter­molecular C—H⋯O hydrogen bonds are shown by dotted lines.

b . DOI: 10.1107/S2056989015020794/qm2113fig3.tif

Packing viewed down the b axis showing the layered structure.

CCDC reference: 1434730

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES