Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 18;71(Pt 12):o951–o952. doi: 10.1107/S205698901502085X

Crystal structure of 1-[(2,2-dimethyl-1,3-dioxolan-4-yl)meth­yl]-2-(thia­zol-4-yl)-1H-benzimidazole

Hicham Gueddar a,*, Rachid Bouhfid a, El Mokhtar Essassi a,b, Mohamed Saadi c, Lahcen El Ammari c
PMCID: PMC4719918  PMID: 26870546

Abstract

The benzimidazole ring in the title compound, C16H17N3O2S, is almost planar, with the greatest deviation from the mean plane being 0.032 (1) Å. The fused-ring system makes dihedral angles of 19.91 (7) and 24.51 (8)° with the best plane through each of the thia­zol-4-yl and 1,3-dioxolan-4-yl rings, respectively; the latter exhibits an envelope conformation with the methyl­ene C atom being the flap. Finally, the thia­zol-4-yl ring makes a dihedral angle of 33.85 (9)° with the 1,3-dioxolan-4-yl ring. In the crystal, mol­ecules are connected by a pair of C—H⋯π(imidazole) inter­actions to form centrosymmetric aggregates.

Keywords: crystal structure; benzimidazole; thia­zol-4-yl; 1,3-dioxolan-4-yl

Related literature  

For the use of the title compound as an anthelmintic, see: Brown et al. (1961); Hennekeuser et al. (1969); as a food preservative and an agricultural fungicide, see: Arenas & Johnson (1994); for induction of aneuploidy and photogenotoxicity in bacteria and cultured human cells, see: Watanabe-Akanuma et al. (2005); as an anti-angiogenic, see: Cha et al. (2012); and as a ligand for transition metal ions, see: Gueddar et al. (2013).graphic file with name e-71-0o951-scheme1.jpg

Experimental  

Crystal data  

  • C16H17N3O2S

  • M r = 315.38

  • Triclinic, Inline graphic

  • a = 9.3177 (5) Å

  • b = 9.3786 (6) Å

  • c = 9.5418 (6) Å

  • α = 78.739 (4)°

  • β = 78.777 (3)°

  • γ = 73.632 (3)°

  • V = 775.95 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.36 × 0.31 × 0.26 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.700, T max = 0.747

  • 19810 measured reflections

  • 4740 independent reflections

  • 2804 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.116

  • S = 1.03

  • 4740 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS2014/ (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip,2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901502085X/tk5404sup1.cif

e-71-0o951-sup1.cif (671.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901502085X/tk5404Isup2.hkl

e-71-0o951-Isup2.hkl (377.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698901502085X/tk5404Isup3.cml

. DOI: 10.1107/S205698901502085X/tk5404fig1.tif

Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

CCDC reference: 1435046

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N2/N3/C4/C5/C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13BCg1i 0.97 2.83 3.7543 (18) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and the University Mohammed V, Rabat, Morocco, for financial support.

supplementary crystallographic information

S1. Comment

Thiabendazole [2-(4-thiazolyl)benzimidazole, TBZ], is used as a broad spectrum anthelmintic in various animals (Brown et al., 1961) and in humans (Hennekeuser et al., 1969). TBZ inhibits anaerobic respiration at the level of mitochondrial helminth-specific enzyme. This compound has also been used as a food preservative and an agricultural fungicide (Arenas and Johnson, 1994). Induction of aneuploidy and photogenotoxicity has been reported for TBZ in bacteria and cultured human cells (Watanabe-Akanuma et al., 2005). TBZ has recently been verified to be vascular disrupting agent and thus as a potential complementary therapeutic for use in combination with current anti-angiogenic therapeutics (Cha et al., 2012). TBZ is also an effective ligand to coordinate transition metal ions (Gueddar et al., 2013). The title compound is synthesized by action of TBZ on tosylated solketal under phase transfer catalysis conditions.

The molecule of the title compound is build up from fused five- and six-membered rings linked to a thiazol-4-yl cycle and, via one —CH2— link, to a 2,2-dimethyl-1,3-dioxolan-4-yl group as shown in Fig. 1. The benzimidazole ring is essentially planar with the maximum deviation from the mean plane being 0.032 (1)° at C4 and makes dihedral angles of 19.91 (7) and 24.51 (8)° with the mean plane through the thiazol-4-yl and the 3-dioxolan-4-yl rings, respectively. The dihedral angle between the thiazol-4-yl cycle and the 3-dioxolan-4-yl ring is of 33.85 (9)°. Furthermore, the five-membered ring (O1O2C12C13C14) adopts an envelope conformations on C13 as indicated by the total puckering amplitude Q2 = 0.381 (2) Å and spherical polar angle φ2 = 72.2 (2)°. In the crystal, the molecules are held together by C13–H13B···π interactions involving the imidazole ring.

S2. Experimental

To a solution of thiabendazole (1 g, 5 × 10 -3 mol.) dissolved in DMF (20 ml) was added potassium carbonate (0.83 g, 6 × 10 -3 mol.), tetra-n-butylammonium bromide (0.13 g, 0.4 × 10 -3 mol) and tosylated solketal (2.79 g, 10 × 10 -3 mol). The mixture was heated for 48 h. After the completion of the reaction (as monitored by TLC), the inorganic material was filtered and the solvent was removed under reduced pressure. The residue obtained was recrystallized from ethanol to afford the title compound as colourless crystals.

S3. Refinement

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 (methylene), C—H = 0.98 (methine) and C—H = 0.96 Å (methyl), and with Uiso(H) = 1.2 Ueq(aromatic, methine and methylene) and Uiso(H) = 1.5 Ueq(methyl). The reflections (0 1 0) and (1 0 0), which were affected by the beam-stop, were removed from the final cycles of refinement owing to poor agreement.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

Crystal data

C16H17N3O2S Z = 2
Mr = 315.38 F(000) = 332
Triclinic, P1 Dx = 1.350 Mg m3
a = 9.3177 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.3786 (6) Å Cell parameters from 4740 reflections
c = 9.5418 (6) Å θ = 2.8–30.5°
α = 78.739 (4)° µ = 0.22 mm1
β = 78.777 (3)° T = 296 K
γ = 73.632 (3)° Block, colourless
V = 775.95 (8) Å3 0.36 × 0.31 × 0.26 mm

Data collection

Bruker X8 APEX diffractometer 4740 independent reflections
Radiation source: fine-focus sealed tube 2804 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
φ and ω scans θmax = 30.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→13
Tmin = 0.700, Tmax = 0.747 k = −13→13
19810 measured reflections l = −13→13

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0871P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4740 reflections Δρmax = 0.16 e Å3
199 parameters Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9210 (2) −0.0317 (2) 0.68651 (19) 0.0621 (5)
H1 1.0193 −0.0386 0.6391 0.074*
C2 0.69556 (19) −0.05253 (19) 0.84926 (17) 0.0567 (4)
H2 0.6188 −0.0714 0.9230 0.068*
C3 0.67345 (17) 0.04071 (16) 0.72279 (15) 0.0455 (3)
C4 0.52432 (17) 0.11882 (16) 0.68306 (15) 0.0431 (3)
C5 0.28330 (18) 0.20058 (17) 0.69744 (17) 0.0480 (4)
C6 0.12767 (19) 0.2376 (2) 0.7404 (2) 0.0625 (5)
H6 0.0870 0.2227 0.8375 0.075*
C7 0.0354 (2) 0.2967 (2) 0.6362 (2) 0.0700 (5)
H7 −0.0690 0.3218 0.6636 0.084*
C8 0.0949 (2) 0.3197 (2) 0.4904 (2) 0.0672 (5)
H8 0.0292 0.3598 0.4225 0.081*
C9 0.2485 (2) 0.28454 (19) 0.44413 (19) 0.0569 (4)
H9 0.2883 0.2997 0.3467 0.068*
C10 0.34127 (17) 0.22519 (16) 0.55071 (16) 0.0450 (3)
C11 0.60240 (18) 0.16781 (16) 0.40757 (15) 0.0454 (3)
H11A 0.5501 0.1612 0.3315 0.055*
H11B 0.6843 0.0776 0.4179 0.055*
C12 0.66868 (18) 0.30373 (17) 0.36290 (16) 0.0477 (4)
H12 0.7195 0.3150 0.4394 0.057*
C13 0.55626 (19) 0.44806 (18) 0.31814 (17) 0.0535 (4)
H13A 0.4595 0.4562 0.3802 0.064*
H13B 0.5932 0.5348 0.3188 0.064*
C14 0.69603 (17) 0.36581 (17) 0.11179 (16) 0.0488 (4)
C15 0.6876 (2) 0.2593 (2) 0.01678 (19) 0.0673 (5)
H15A 0.7877 0.2135 −0.0270 0.101*
H15B 0.6277 0.3134 −0.0572 0.101*
H15C 0.6420 0.1827 0.0738 0.101*
C16 0.7744 (2) 0.4856 (2) 0.0327 (2) 0.0702 (5)
H16A 0.8749 0.4389 −0.0094 0.105*
H16B 0.7793 0.5480 0.0993 0.105*
H16C 0.7187 0.5459 −0.0422 0.105*
N1 0.80427 (15) 0.05273 (16) 0.62983 (15) 0.0575 (4)
N2 0.40020 (14) 0.13467 (15) 0.77840 (13) 0.0487 (3)
N3 0.49717 (14) 0.17320 (13) 0.54286 (12) 0.0428 (3)
O1 0.77265 (12) 0.28446 (12) 0.23223 (11) 0.0532 (3)
O2 0.54583 (12) 0.43257 (12) 0.17557 (11) 0.0528 (3)
S1 0.88238 (5) −0.12939 (6) 0.85352 (5) 0.06612 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0568 (10) 0.0661 (12) 0.0570 (10) −0.0168 (9) −0.0043 (8) 0.0032 (9)
C2 0.0634 (10) 0.0589 (10) 0.0394 (8) −0.0103 (8) −0.0008 (7) −0.0019 (7)
C3 0.0575 (9) 0.0398 (8) 0.0378 (8) −0.0142 (7) −0.0019 (7) −0.0050 (6)
C4 0.0582 (9) 0.0353 (7) 0.0353 (7) −0.0151 (6) −0.0030 (6) −0.0028 (6)
C5 0.0571 (9) 0.0408 (8) 0.0460 (8) −0.0155 (7) −0.0027 (7) −0.0067 (7)
C6 0.0574 (10) 0.0646 (11) 0.0609 (11) −0.0161 (8) 0.0029 (8) −0.0092 (9)
C7 0.0560 (10) 0.0694 (13) 0.0828 (14) −0.0143 (9) −0.0089 (10) −0.0110 (11)
C8 0.0697 (12) 0.0584 (11) 0.0753 (13) −0.0103 (9) −0.0268 (10) −0.0070 (9)
C9 0.0713 (11) 0.0475 (9) 0.0522 (10) −0.0137 (8) −0.0138 (8) −0.0055 (7)
C10 0.0560 (9) 0.0344 (7) 0.0455 (8) −0.0143 (6) −0.0063 (7) −0.0053 (6)
C11 0.0600 (9) 0.0392 (8) 0.0350 (7) −0.0138 (7) −0.0013 (6) −0.0045 (6)
C12 0.0630 (9) 0.0460 (9) 0.0358 (7) −0.0202 (7) −0.0048 (7) −0.0032 (6)
C13 0.0705 (10) 0.0408 (8) 0.0465 (9) −0.0163 (8) 0.0016 (8) −0.0071 (7)
C14 0.0540 (9) 0.0481 (9) 0.0383 (8) −0.0113 (7) −0.0030 (7) 0.0013 (7)
C15 0.0823 (13) 0.0676 (12) 0.0505 (10) −0.0155 (10) −0.0057 (9) −0.0144 (9)
C16 0.0817 (13) 0.0655 (12) 0.0573 (11) −0.0289 (10) 0.0011 (9) 0.0091 (9)
N1 0.0523 (8) 0.0596 (9) 0.0537 (8) −0.0172 (7) −0.0055 (6) 0.0095 (7)
N2 0.0546 (7) 0.0489 (7) 0.0405 (7) −0.0155 (6) −0.0004 (6) −0.0048 (6)
N3 0.0534 (7) 0.0380 (7) 0.0354 (6) −0.0131 (5) −0.0029 (5) −0.0029 (5)
O1 0.0508 (6) 0.0579 (7) 0.0422 (6) −0.0102 (5) −0.0041 (5) 0.0049 (5)
O2 0.0562 (6) 0.0514 (6) 0.0429 (6) −0.0066 (5) −0.0048 (5) −0.0014 (5)
S1 0.0670 (3) 0.0732 (3) 0.0465 (3) −0.0051 (2) −0.0116 (2) 0.0032 (2)

Geometric parameters (Å, º)

C1—N1 1.295 (2) C10—N3 1.3879 (19)
C1—S1 1.7030 (18) C11—N3 1.4612 (18)
C1—H1 0.9300 C11—C12 1.522 (2)
C2—C3 1.359 (2) C11—H11A 0.9700
C2—S1 1.6913 (18) C11—H11B 0.9700
C2—H2 0.9300 C12—O1 1.4300 (17)
C3—N1 1.3794 (19) C12—C13 1.504 (2)
C3—C4 1.461 (2) C12—H12 0.9800
C4—N2 1.3167 (18) C13—O2 1.4205 (19)
C4—N3 1.3807 (18) C13—H13A 0.9700
C5—N2 1.388 (2) C13—H13B 0.9700
C5—C6 1.390 (2) C14—O2 1.4299 (18)
C5—C10 1.398 (2) C14—O1 1.4431 (18)
C6—C7 1.372 (3) C14—C15 1.501 (2)
C6—H6 0.9300 C14—C16 1.510 (2)
C7—C8 1.393 (3) C15—H15A 0.9600
C7—H7 0.9300 C15—H15B 0.9600
C8—C9 1.378 (3) C15—H15C 0.9600
C8—H8 0.9300 C16—H16A 0.9600
C9—C10 1.393 (2) C16—H16B 0.9600
C9—H9 0.9300 C16—H16C 0.9600
N1—C1—S1 115.57 (13) O1—C12—C11 108.49 (12)
N1—C1—H1 122.2 C13—C12—C11 114.15 (13)
S1—C1—H1 122.2 O1—C12—H12 110.6
C3—C2—S1 110.39 (12) C13—C12—H12 110.6
C3—C2—H2 124.8 C11—C12—H12 110.6
S1—C2—H2 124.8 O2—C13—C12 101.61 (12)
C2—C3—N1 114.69 (14) O2—C13—H13A 111.4
C2—C3—C4 123.77 (14) C12—C13—H13A 111.4
N1—C3—C4 121.50 (13) O2—C13—H13B 111.4
N2—C4—N3 113.24 (13) C12—C13—H13B 111.4
N2—C4—C3 122.47 (13) H13A—C13—H13B 109.3
N3—C4—C3 124.13 (13) O2—C14—O1 104.86 (11)
N2—C5—C6 130.26 (15) O2—C14—C15 108.45 (13)
N2—C5—C10 110.23 (13) O1—C14—C15 110.33 (13)
C6—C5—C10 119.47 (16) O2—C14—C16 110.57 (13)
C7—C6—C5 118.54 (17) O1—C14—C16 109.05 (13)
C7—C6—H6 120.7 C15—C14—C16 113.24 (15)
C5—C6—H6 120.7 C14—C15—H15A 109.5
C6—C7—C8 121.29 (17) C14—C15—H15B 109.5
C6—C7—H7 119.4 H15A—C15—H15B 109.5
C8—C7—H7 119.4 C14—C15—H15C 109.5
C9—C8—C7 121.69 (18) H15A—C15—H15C 109.5
C9—C8—H8 119.2 H15B—C15—H15C 109.5
C7—C8—H8 119.2 C14—C16—H16A 109.5
C8—C9—C10 116.57 (17) C14—C16—H16B 109.5
C8—C9—H9 121.7 H16A—C16—H16B 109.5
C10—C9—H9 121.7 C14—C16—H16C 109.5
N3—C10—C9 131.86 (14) H16A—C16—H16C 109.5
N3—C10—C5 105.65 (13) H16B—C16—H16C 109.5
C9—C10—C5 122.43 (15) C1—N1—C3 109.91 (14)
N3—C11—C12 113.34 (12) C4—N2—C5 104.91 (12)
N3—C11—H11A 108.9 C4—N3—C10 105.96 (12)
C12—C11—H11A 108.9 C4—N3—C11 129.77 (13)
N3—C11—H11B 108.9 C10—N3—C11 124.02 (12)
C12—C11—H11B 108.9 C12—O1—C14 108.64 (11)
H11A—C11—H11B 107.7 C13—O2—C14 106.22 (12)
O1—C12—C13 101.94 (12) C2—S1—C1 89.43 (8)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N2/N3/C4/C5/C10 ring.

D—H···A D—H H···A D···A D—H···A
C13—H13B···Cg1i 0.97 2.83 3.7543 (18) 160

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5404).

References

  1. Arenas, R. V. & Johnson, N. A. (1994). J. AOAC Int. 77, 710–713. [PubMed]
  2. Brown, H. D., Matzuk, A. R., Ilves, I. R., Peterson, L. H., Harris, S. A., Sarett, L. H., Egerton, J. R., Yakstis, J. J., Campbell, W. C. & Cuckler, A. C. (1961). J. Am. Chem. Soc. 83, 1764–1765.
  3. Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cha, H., Byrom, M., Mead, P., Ellington, A., Wallingford, J. & Marcotte, E. (2012). PLoS Biol. 10, e1001379. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gueddar, H., Bouhfid, R., Essassi, E. M., El Brahmi, N. & El Ammari, L. (2013). Acta Cryst. E69, m5–m6. [DOI] [PMC free article] [PubMed]
  7. Hennekeuser, H. H., Pabst, K., Poeplau, W. & Gerok, W. (1969). Tex. Rep. Biol. Med. 27, 581–586. [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Watanabe-Akanuma, M., Ohta, T. & Sasaki, Y. F. (2005). Toxicol. Lett. 158, 213–219. [DOI] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901502085X/tk5404sup1.cif

e-71-0o951-sup1.cif (671.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901502085X/tk5404Isup2.hkl

e-71-0o951-Isup2.hkl (377.3KB, hkl)

Supporting information file. DOI: 10.1107/S205698901502085X/tk5404Isup3.cml

. DOI: 10.1107/S205698901502085X/tk5404fig1.tif

Mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.

CCDC reference: 1435046

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES