Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 21;71(Pt 12):o976–o977. doi: 10.1107/S2056989015021076

Crystal structure of 3-(prop-2-en-1-yl)-1-{[(1E)-1,2,3,4-tetra­hydro­naphthalen-1-yl­idene]amino}­thio­urea

Joel T Mague a, Shaaban K Mohamed b,c, Mehmet Akkurt d, Alaa A Hassan c, Ahmed T Abdel-Aziz c, Mustafa R Albayati e,*
PMCID: PMC4719931  PMID: 26870559

Abstract

In the title compound, C14H17N3S, the dihedral angle between the planes of the benzene ring and the thio­semicarbazone group (r.m.s. deviation = 0.031 Å) is 8.45 (4)°. A short intra­molcular N—H⋯N contact is seen. In the crystal, weak N—H⋯S hydrogen bonds connect the mol­ecules into C(4) chains propagating in the [010] direction, with adjacent mol­ecules in the chain related by 21 screw-axis symmetry.

Keywords: thio­semicarbazone, crystal structure, N—H⋯S hydrogen bond

Related literature  

For a related structure and background to thio­semi­car­ba­zones, see: Mohamed et al. (2015). For further synthetic details, see: Mague et al. (2014).graphic file with name e-71-0o976-scheme1.jpg

Experimental  

Crystal data  

  • C14H17N3S

  • M r = 259.36

  • Monoclinic, Inline graphic

  • a = 7.6665 (2) Å

  • b = 8.5788 (2) Å

  • c = 20.4072 (5) Å

  • β = 91.794 (1)°

  • V = 1341.51 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.02 mm−1

  • T = 150 K

  • 0.20 × 0.19 × 0.16 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.68, T max = 0.73

  • 10141 measured reflections

  • 2687 independent reflections

  • 2486 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.084

  • S = 1.07

  • 2687 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Bruker, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2014).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015021076/hb7539sup1.cif

e-71-0o976-sup1.cif (320KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015021076/hb7539Isup2.hkl

e-71-0o976-Isup2.hkl (215.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015021076/hb7539Isup3.cml

. DOI: 10.1107/S2056989015021076/hb7539fig1.tif

The title mol­ecule with 50% probability displacement ellipsoids.

a . DOI: 10.1107/S2056989015021076/hb7539fig2.tif

Packing viewed down the a axis.

CCDC reference: 1435398

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N3 0.91 2.17 2.6146 (13) 109
N1—H1N⋯S1i 0.91 2.82 3.4642 (11) 129

Symmetry code: (i) Inline graphic.

Acknowledgments

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

supplementary crystallographic information

S1. Experimental

The title compound was prepared according to our recently reported method (Mague et al., 2014). Colourless blocks were recrystallised from ethanol solution. M.p. 393–394 K, 92% yield.

S2. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Figures

Fig. 1.

Fig. 1.

The title molecule with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing viewed down the a axis.

Crystal data

C14H17N3S F(000) = 552
Mr = 259.36 Dx = 1.284 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 7.6665 (2) Å Cell parameters from 8207 reflections
b = 8.5788 (2) Å θ = 4.3–74.5°
c = 20.4072 (5) Å µ = 2.02 mm1
β = 91.794 (1)° T = 150 K
V = 1341.51 (6) Å3 Block, colourless
Z = 4 0.20 × 0.19 × 0.16 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 2687 independent reflections
Radiation source: INCOATEC IµS micro–focus source 2486 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.022
Detector resolution: 10.4167 pixels mm-1 θmax = 74.5°, θmin = 4.3°
ω scans h = −8→9
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −10→10
Tmin = 0.68, Tmax = 0.73 l = −21→25
10141 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: mixed
wR(F2) = 0.084 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.3454P] where P = (Fo2 + 2Fc2)/3
2687 reflections (Δ/σ)max = 0.001
163 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.48923 (4) 0.32351 (4) 0.80129 (2) 0.03037 (11)
N1 0.24491 (13) 0.48661 (13) 0.73353 (5) 0.0280 (2)
H1N 0.2236 0.5554 0.7003 0.034*
N2 0.51325 (12) 0.47130 (12) 0.68903 (5) 0.0239 (2)
H2N 0.6272 0.4415 0.6911 0.029*
N3 0.44987 (12) 0.56539 (11) 0.63901 (4) 0.0220 (2)
C1 −0.0358 (2) 0.27861 (18) 0.69916 (8) 0.0472 (4)
H1A 0.0572 0.2901 0.6699 0.057*
H1B −0.1320 0.2131 0.6878 0.057*
C2 −0.03150 (17) 0.35274 (17) 0.75504 (7) 0.0348 (3)
H2 −0.1277 0.3373 0.7826 0.042*
C3 0.10929 (16) 0.45938 (16) 0.78005 (6) 0.0299 (3)
H3A 0.0565 0.5606 0.7917 0.036*
H3B 0.1628 0.4143 0.8206 0.036*
C4 0.40678 (15) 0.43269 (13) 0.73855 (5) 0.0234 (2)
C5 0.55646 (14) 0.60710 (13) 0.59461 (5) 0.0203 (2)
C6 0.74503 (15) 0.55855 (14) 0.59361 (6) 0.0249 (2)
H6A 0.7515 0.4483 0.5795 0.030*
H6B 0.7964 0.5655 0.6386 0.030*
C7 0.85274 (15) 0.65815 (15) 0.54803 (6) 0.0265 (3)
H7A 0.8674 0.7639 0.5669 0.032*
H7B 0.9700 0.6114 0.5440 0.032*
C8 0.76392 (16) 0.66981 (15) 0.48046 (6) 0.0279 (3)
H8A 0.8331 0.7386 0.4522 0.033*
H8B 0.7588 0.5652 0.4600 0.033*
C9 0.58186 (15) 0.73399 (13) 0.48518 (5) 0.0235 (2)
C10 0.50909 (18) 0.82536 (14) 0.43472 (6) 0.0293 (3)
H10 0.5748 0.8447 0.3969 0.035*
C11 0.34410 (18) 0.88813 (14) 0.43851 (6) 0.0323 (3)
H11 0.2971 0.9499 0.4036 0.039*
C12 0.24694 (17) 0.86062 (14) 0.49371 (6) 0.0299 (3)
H12 0.1333 0.9037 0.4966 0.036*
C13 0.31603 (15) 0.77037 (13) 0.54449 (6) 0.0244 (2)
H13 0.2494 0.7522 0.5822 0.029*
C14 0.48339 (15) 0.70551 (13) 0.54080 (5) 0.0208 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02807 (18) 0.03706 (19) 0.02591 (18) −0.00248 (11) −0.00050 (12) 0.01231 (11)
N1 0.0248 (5) 0.0385 (6) 0.0208 (5) −0.0010 (4) 0.0016 (4) 0.0074 (4)
N2 0.0233 (5) 0.0280 (5) 0.0204 (5) −0.0003 (4) 0.0011 (4) 0.0048 (4)
N3 0.0247 (5) 0.0240 (5) 0.0173 (4) −0.0012 (4) −0.0001 (4) 0.0013 (3)
C1 0.0498 (9) 0.0378 (8) 0.0528 (9) −0.0060 (7) −0.0182 (7) 0.0063 (7)
C2 0.0252 (6) 0.0413 (7) 0.0378 (7) −0.0005 (5) −0.0005 (5) 0.0176 (6)
C3 0.0288 (6) 0.0410 (7) 0.0203 (6) 0.0011 (5) 0.0056 (5) 0.0035 (5)
C4 0.0259 (6) 0.0247 (6) 0.0196 (5) −0.0047 (4) 0.0001 (4) −0.0001 (4)
C5 0.0228 (5) 0.0206 (5) 0.0176 (5) −0.0034 (4) −0.0004 (4) −0.0024 (4)
C6 0.0223 (5) 0.0273 (6) 0.0249 (6) −0.0018 (4) 0.0000 (4) 0.0021 (4)
C7 0.0216 (6) 0.0329 (6) 0.0250 (6) −0.0057 (5) 0.0012 (5) −0.0015 (5)
C8 0.0267 (6) 0.0362 (7) 0.0209 (6) −0.0066 (5) 0.0043 (5) −0.0025 (4)
C9 0.0278 (6) 0.0230 (5) 0.0198 (5) −0.0077 (4) 0.0001 (4) −0.0018 (4)
C10 0.0389 (7) 0.0298 (6) 0.0192 (6) −0.0094 (5) −0.0003 (5) 0.0019 (4)
C11 0.0450 (7) 0.0239 (6) 0.0272 (6) −0.0038 (5) −0.0098 (5) 0.0041 (5)
C12 0.0315 (6) 0.0237 (6) 0.0339 (7) 0.0025 (5) −0.0068 (5) −0.0013 (5)
C13 0.0263 (6) 0.0233 (5) 0.0235 (6) −0.0024 (4) 0.0005 (4) −0.0016 (4)
C14 0.0238 (5) 0.0198 (5) 0.0186 (5) −0.0039 (4) −0.0014 (4) −0.0018 (4)

Geometric parameters (Å, º)

S1—C4 1.6928 (12) C6—H6A 0.9900
N1—C4 1.3254 (16) C6—H6B 0.9900
N1—C3 1.4487 (16) C7—C8 1.5220 (16)
N1—H1N 0.9098 C7—H7A 0.9900
N2—C4 1.3597 (15) C7—H7B 0.9900
N2—N3 1.3778 (13) C8—C9 1.5063 (17)
N2—H2N 0.9098 C8—H8A 0.9900
N3—C5 1.2897 (15) C8—H8B 0.9900
C1—C2 1.305 (2) C9—C10 1.3964 (17)
C1—H1A 0.9500 C9—C14 1.4042 (16)
C1—H1B 0.9500 C10—C11 1.379 (2)
C2—C3 1.4926 (19) C10—H10 0.9500
C2—H2 0.9500 C11—C12 1.390 (2)
C3—H3A 0.9900 C11—H11 0.9500
C3—H3B 0.9900 C12—C13 1.3854 (17)
C5—C14 1.4811 (15) C12—H12 0.9500
C5—C6 1.5052 (16) C13—C14 1.4027 (16)
C6—C7 1.5249 (16) C13—H13 0.9500
C4—N1—C3 125.63 (10) C8—C7—C6 110.73 (10)
C4—N1—H1N 115.4 C8—C7—H7A 109.5
C3—N1—H1N 118.5 C6—C7—H7A 109.5
C4—N2—N3 119.17 (10) C8—C7—H7B 109.5
C4—N2—H2N 119.7 C6—C7—H7B 109.5
N3—N2—H2N 121.0 H7A—C7—H7B 108.1
C5—N3—N2 117.81 (10) C9—C8—C7 110.81 (10)
C2—C1—H1A 120.0 C9—C8—H8A 109.5
C2—C1—H1B 120.0 C7—C8—H8A 109.5
H1A—C1—H1B 120.0 C9—C8—H8B 109.5
C1—C2—C3 126.56 (14) C7—C8—H8B 109.5
C1—C2—H2 116.7 H8A—C8—H8B 108.1
C3—C2—H2 116.7 C10—C9—C14 118.77 (11)
N1—C3—C2 113.63 (11) C10—C9—C8 120.51 (11)
N1—C3—H3A 108.8 C14—C9—C8 120.71 (10)
C2—C3—H3A 108.8 C11—C10—C9 121.58 (12)
N1—C3—H3B 108.8 C11—C10—H10 119.2
C2—C3—H3B 108.8 C9—C10—H10 119.2
H3A—C3—H3B 107.7 C10—C11—C12 119.66 (11)
N1—C4—N2 116.10 (10) C10—C11—H11 120.2
N1—C4—S1 125.31 (9) C12—C11—H11 120.2
N2—C4—S1 118.58 (9) C13—C12—C11 119.94 (12)
N3—C5—C14 116.47 (10) C13—C12—H12 120.0
N3—C5—C6 124.24 (10) C11—C12—H12 120.0
C14—C5—C6 119.26 (10) C12—C13—C14 120.69 (11)
C5—C6—C7 113.07 (10) C12—C13—H13 119.7
C5—C6—H6A 109.0 C14—C13—H13 119.7
C7—C6—H6A 109.0 C13—C14—C9 119.35 (10)
C5—C6—H6B 109.0 C13—C14—C5 120.78 (10)
C7—C6—H6B 109.0 C9—C14—C5 119.87 (10)
H6A—C6—H6B 107.8
C4—N2—N3—C5 176.28 (10) C14—C9—C10—C11 0.25 (17)
C4—N1—C3—C2 −109.16 (14) C8—C9—C10—C11 −178.62 (11)
C1—C2—C3—N1 4.4 (2) C9—C10—C11—C12 0.07 (18)
C3—N1—C4—N2 179.56 (11) C10—C11—C12—C13 −0.07 (18)
C3—N1—C4—S1 −1.23 (18) C11—C12—C13—C14 −0.26 (18)
N3—N2—C4—N1 1.89 (16) C12—C13—C14—C9 0.58 (17)
N3—N2—C4—S1 −177.38 (8) C12—C13—C14—C5 −179.10 (10)
N2—N3—C5—C14 178.78 (9) C10—C9—C14—C13 −0.57 (16)
N2—N3—C5—C6 0.54 (16) C8—C9—C14—C13 178.30 (10)
N3—C5—C6—C7 −163.89 (11) C10—C9—C14—C5 179.12 (10)
C14—C5—C6—C7 17.91 (14) C8—C9—C14—C5 −2.02 (16)
C5—C6—C7—C8 −50.50 (14) N3—C5—C14—C13 10.37 (15)
C6—C7—C8—C9 56.66 (13) C6—C5—C14—C13 −171.29 (10)
C7—C8—C9—C10 147.83 (11) N3—C5—C14—C9 −169.31 (10)
C7—C8—C9—C14 −31.02 (15) C6—C5—C14—C9 9.03 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···N3 0.91 2.17 2.6146 (13) 109
N1—H1N···S1i 0.91 2.82 3.4642 (11) 129

Symmetry code: (i) −x+1/2, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7539).

References

  1. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2, SAINT, SADABS, SHELXT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o515. [DOI] [PMC free article] [PubMed]
  4. Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A., Abdel-Aziz, A. T. & Albayati, M. R. (2015). Acta Cryst. E71, o974–o975. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015021076/hb7539sup1.cif

e-71-0o976-sup1.cif (320KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015021076/hb7539Isup2.hkl

e-71-0o976-Isup2.hkl (215.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015021076/hb7539Isup3.cml

. DOI: 10.1107/S2056989015021076/hb7539fig1.tif

The title mol­ecule with 50% probability displacement ellipsoids.

a . DOI: 10.1107/S2056989015021076/hb7539fig2.tif

Packing viewed down the a axis.

CCDC reference: 1435398

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES