Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 21;71(Pt 12):o981. doi: 10.1107/S2056989015022033

Crystal structure of 4-(4-meth­oxy­phen­yl)-4′,4′-dimethyl-3-p-tolyl-3′,4′-di­hydro-1′H,3H-spiro­[isoxazole-5,2′-naphthalen]-1′-one

Mohamed Akhazzane a, Ghali Al Houari a,*, Mohamed El Yazidi a, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC4719934  PMID: 26870562

Abstract

In the title compound, C28H27NO3, the cyclo­hexa­none and isoxazole rings have envelope conformations, with the methyl­ene and spiro C atoms as the flaps, respectively. The mean plane of the isoxazole ring is inclined slightly to the p-tolyl ring, making a dihedral angle of 14.20 (9)°, and is nearly perpendicular to the mean plane through the tetra­lone moiety and to the meth­oxy­phenyl ring [dihedral angles = 83.41 (8) and 72.12 (9)°, respectively]. The crystal packing is stabilized mainly by van der Waals forces.

Keywords: crystal structure, isoxazole, tetra­lone

Related literature  

For general background to 1,3-dipolar cyclo­addition reactions, see: Al Houari et al. (2008, 2010). For the structures of related compounds, see: Akhazzane et al. (2010, 2011); Mahfoud et al. (2015).graphic file with name e-71-0o981-scheme1.jpg

Experimental  

Crystal data  

  • C28H27NO3

  • M r = 425.50

  • Monoclinic, Inline graphic

  • a = 10.2158 (8) Å

  • b = 12.9129 (10) Å

  • c = 17.6582 (14) Å

  • β = 103.801 (3)°

  • V = 2262.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.26 mm

Data collection  

  • Bruker X8 APEX diffractometer

  • 33809 measured reflections

  • 5385 independent reflections

  • 3283 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.129

  • S = 1.02

  • 5385 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015022033/rz5177sup1.cif

e-71-0o981-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022033/rz5177Isup2.hkl

e-71-0o981-Isup2.hkl (428.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022033/rz5177Isup3.cml

. DOI: 10.1107/S2056989015022033/rz5177fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

CCDC reference: 1437668

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

supplementary crystallographic information

S1. Comment

In the context of our research concerning the approach of dipole-dipolarophile in 1,3-dipolar cycloaddition, we have already studied the case where the dipole is an arylnitriloxide and the dipolarophiles are 2-arylidenes of tetralone (systematic name: 3,4-dihydronaphthalen-1-one) substituted by an anisopropyl group in position 4 (Al Houari et al., 2008; Al Houari et al., 2010). We have shown that the ring closure reaction is highly regiselective and also highly diastereoselective. The relative configuration and conformation of the products have been determined by means of proton magnetic resonance measurements. In this paper we describe the regiochemistry in the reaction of para-tolylnitriloxide with (E)-2-(4-methoxybenzylidene)-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one, as a continuation of the investigation on dihydronaphthalene derivatives (Akhazzane et al., 2010, Akhazzane et al., 2011, Mahfoud et al., 2015).

The molecule of the title compound is build up from a tetralone moiety linked to an isoxazole ring which is connected to a p-tolyl ring and to a methoxyphenyl group in axial position as shown in Fig. 1. The cyclohexanone and the isoxazole rings adopt an envelope conformation with atoms C22 and C9 (spiro C atom) as the flap, respectively. The puckering parameters (Cremer & Pople, 1975) are: QT = 0.413 (2) Å, θ = 122.0 (3)° and φ = 111.1 (3)° for the cyclohexanone ring; q2 = 0.0931 (17) Å, φ2 = 329.4 (11)° for the isoxazole ring. The mean planes through the tetralone moiety, the methoxyphenyl ring and the p-tolyl ring are inclined to the mean plane of the isoxazole ring by dihedral angles of 83.41 (8), 72.12 (9) and 14.20 (9)°, respectively. In the crystal, packing is enforced only by van der Waals interactions.

S2. Experimental

In a 100 ml flask, 2 mmol of the arylidene 2-(4-methoxybenzylidene)-4,4-dimethyl-3,4-dihydronaphthalen-1(2H)-one and 2.4 mmol of p-tolyloxime were dissolved in 20 ml chloroform. The mixture was cooled to 273 K under magnetic stirring in an ice bath. Then 15 ml of bleach at 18° (chlorometric degree) was added in small doses without exceeding 278 K. The mixture was left under magnetic stirring for 16 h at room temperature, then washed with water until the pH was neutral and dried on sodium sulfate. The solvent was evaporated with a rotating evaporator and the oily residue was dissolved in ethanol. The resulting residue was recrystallized from ethanol to afford the title compound as colourless needles crystals on slow evaporation of the solvent (yield: 58%; m. p: 443 K).

S3. Refinement

One reflection (0 1 1) affected by the beamstop was removed in the cycles of refinement. All H atoms were located in a difference Fourier map and treated as riding, with C–H = 0.96–0.98 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

Crystal data

C28H27NO3 Dx = 1.249 Mg m3
Mr = 425.50 Melting point: 443 K
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 10.2158 (8) Å Cell parameters from 5385 reflections
b = 12.9129 (10) Å θ = 2.4–27.9°
c = 17.6582 (14) Å µ = 0.08 mm1
β = 103.801 (3)° T = 296 K
V = 2262.1 (3) Å3 Block, colourless
Z = 4 0.42 × 0.31 × 0.26 mm
F(000) = 904

Data collection

Bruker X8 APEX diffractometer 3283 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.054
Graphite monochromator θmax = 27.9°, θmin = 2.4°
φ and ω scans h = −13→12
33809 measured reflections k = −16→16
5385 independent reflections l = −23→23

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.050P)2 + 0.5224P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5385 reflections Δρmax = 0.21 e Å3
289 parameters Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9515 (2) 0.7328 (2) 0.36467 (15) 0.0826 (8)
H1A 0.9351 0.6936 0.3171 0.124*
H1B 0.9704 0.8035 0.3542 0.124*
H1C 1.0273 0.7039 0.4015 0.124*
C2 0.8284 (2) 0.72855 (16) 0.39799 (12) 0.0533 (5)
C3 0.7148 (2) 0.67399 (16) 0.36081 (12) 0.0538 (5)
H3 0.7133 0.6416 0.3136 0.065*
C4 0.6036 (2) 0.66646 (14) 0.39201 (11) 0.0472 (5)
H4 0.5289 0.6287 0.3659 0.057*
C5 0.60251 (17) 0.71487 (13) 0.46221 (10) 0.0384 (4)
C6 0.71442 (19) 0.77192 (16) 0.49867 (12) 0.0523 (5)
H6 0.7152 0.8060 0.5452 0.063*
C7 0.8254 (2) 0.77869 (18) 0.46652 (13) 0.0599 (6)
H7 0.8994 0.8179 0.4917 0.072*
C8 0.48550 (17) 0.70665 (13) 0.49692 (10) 0.0368 (4)
C9 0.33554 (17) 0.71799 (13) 0.57913 (10) 0.0369 (4)
C10 0.48673 (16) 0.73339 (12) 0.58022 (10) 0.0356 (4)
H10 0.5078 0.8072 0.5880 0.043*
C11 0.58808 (16) 0.67307 (12) 0.64087 (9) 0.0338 (4)
C12 0.62936 (17) 0.57313 (13) 0.62684 (10) 0.0394 (4)
H12 0.5945 0.5421 0.5787 0.047*
C13 0.72088 (17) 0.52002 (13) 0.68328 (10) 0.0407 (4)
H13 0.7477 0.4538 0.6728 0.049*
C14 0.77340 (17) 0.56424 (13) 0.75562 (10) 0.0374 (4)
C15 0.73391 (17) 0.66315 (13) 0.77078 (10) 0.0399 (4)
H15 0.7682 0.6937 0.8191 0.048*
C16 0.64284 (17) 0.71604 (13) 0.71310 (10) 0.0382 (4)
H16 0.6177 0.7828 0.7234 0.046*
C17 0.9263 (3) 0.55048 (19) 0.88033 (13) 0.0815 (8)
H17A 0.9871 0.5016 0.9113 0.122*
H17B 0.9755 0.6110 0.8718 0.122*
H17C 0.8585 0.5697 0.9072 0.122*
C18 0.26491 (19) 0.82319 (14) 0.57550 (11) 0.0463 (5)
C19 0.15232 (17) 0.83574 (13) 0.61336 (10) 0.0409 (4)
C20 0.09907 (17) 0.75196 (14) 0.64651 (10) 0.0392 (4)
C21 0.15675 (17) 0.64320 (13) 0.64679 (10) 0.0388 (4)
C22 0.30500 (17) 0.64932 (13) 0.64192 (10) 0.0393 (4)
H22A 0.3582 0.6733 0.6919 0.047*
H22B 0.3352 0.5798 0.6341 0.047*
C23 0.07011 (19) 0.58162 (15) 0.57859 (12) 0.0509 (5)
H23A 0.1059 0.5129 0.5784 0.076*
H23B −0.0208 0.5779 0.5844 0.076*
H23C 0.0711 0.6155 0.5304 0.076*
C24 0.1549 (2) 0.58621 (16) 0.72334 (12) 0.0543 (5)
H24A 0.1916 0.5180 0.7222 0.081*
H24B 0.2081 0.6240 0.7667 0.081*
H24C 0.0638 0.5812 0.7287 0.081*
C25 0.0964 (2) 0.93444 (15) 0.61386 (14) 0.0593 (6)
H25 0.1330 0.9899 0.5924 0.071*
C26 −0.0122 (2) 0.95033 (17) 0.64576 (15) 0.0700 (7)
H26 −0.0484 1.0163 0.6465 0.084*
C27 −0.0667 (2) 0.86782 (18) 0.67658 (14) 0.0627 (6)
H27 −0.1411 0.8780 0.6976 0.075*
C28 −0.01280 (19) 0.77072 (16) 0.67676 (12) 0.0519 (5)
H28 −0.0518 0.7159 0.6976 0.062*
N1 0.37202 (15) 0.67459 (12) 0.45609 (9) 0.0468 (4)
O1 0.86366 (13) 0.50485 (9) 0.80727 (7) 0.0510 (3)
O2 0.27756 (12) 0.67119 (11) 0.50248 (7) 0.0525 (4)
O3 0.30170 (16) 0.89402 (12) 0.53998 (11) 0.0820 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0597 (15) 0.117 (2) 0.0819 (18) 0.0152 (14) 0.0383 (14) 0.0347 (16)
C2 0.0439 (12) 0.0670 (13) 0.0533 (13) 0.0142 (10) 0.0199 (10) 0.0249 (11)
C3 0.0618 (14) 0.0563 (12) 0.0498 (12) 0.0125 (10) 0.0264 (11) 0.0073 (10)
C4 0.0490 (12) 0.0469 (10) 0.0496 (11) 0.0009 (9) 0.0193 (9) 0.0017 (9)
C5 0.0362 (10) 0.0411 (9) 0.0392 (10) 0.0050 (8) 0.0113 (8) 0.0065 (8)
C6 0.0426 (11) 0.0713 (14) 0.0437 (11) −0.0038 (10) 0.0115 (9) 0.0002 (10)
C7 0.0393 (12) 0.0838 (15) 0.0555 (13) −0.0092 (11) 0.0088 (10) 0.0129 (12)
C8 0.0352 (10) 0.0366 (9) 0.0390 (9) 0.0017 (7) 0.0096 (8) 0.0007 (7)
C9 0.0335 (9) 0.0402 (9) 0.0380 (10) 0.0011 (7) 0.0105 (8) −0.0035 (7)
C10 0.0333 (9) 0.0347 (8) 0.0396 (10) −0.0019 (7) 0.0102 (8) −0.0026 (7)
C11 0.0288 (9) 0.0377 (9) 0.0372 (9) −0.0040 (7) 0.0122 (7) −0.0031 (7)
C12 0.0425 (10) 0.0396 (9) 0.0354 (9) −0.0043 (8) 0.0077 (8) −0.0077 (7)
C13 0.0443 (11) 0.0323 (8) 0.0460 (11) −0.0020 (7) 0.0118 (9) −0.0048 (8)
C14 0.0331 (9) 0.0384 (9) 0.0412 (10) −0.0053 (7) 0.0096 (8) 0.0031 (8)
C15 0.0381 (10) 0.0460 (10) 0.0358 (9) −0.0060 (8) 0.0089 (8) −0.0078 (8)
C16 0.0366 (10) 0.0363 (9) 0.0436 (10) −0.0007 (7) 0.0137 (8) −0.0072 (8)
C17 0.101 (2) 0.0679 (15) 0.0544 (14) 0.0168 (14) −0.0229 (13) −0.0062 (12)
C18 0.0386 (10) 0.0429 (10) 0.0585 (12) 0.0028 (8) 0.0136 (9) 0.0073 (9)
C19 0.0330 (9) 0.0402 (9) 0.0492 (11) 0.0005 (7) 0.0091 (8) −0.0073 (8)
C20 0.0326 (9) 0.0446 (9) 0.0399 (10) −0.0021 (8) 0.0075 (8) −0.0086 (8)
C21 0.0343 (9) 0.0397 (9) 0.0444 (10) −0.0030 (7) 0.0129 (8) −0.0030 (8)
C22 0.0355 (10) 0.0382 (9) 0.0451 (10) 0.0016 (7) 0.0110 (8) −0.0013 (8)
C23 0.0451 (11) 0.0459 (11) 0.0618 (13) −0.0068 (9) 0.0129 (10) −0.0090 (9)
C24 0.0533 (13) 0.0570 (12) 0.0576 (13) −0.0018 (10) 0.0234 (10) 0.0064 (10)
C25 0.0500 (12) 0.0404 (10) 0.0895 (17) 0.0010 (9) 0.0206 (12) −0.0065 (10)
C26 0.0581 (14) 0.0495 (12) 0.107 (2) 0.0096 (11) 0.0299 (14) −0.0218 (13)
C27 0.0471 (13) 0.0689 (14) 0.0782 (16) 0.0077 (11) 0.0271 (12) −0.0192 (12)
C28 0.0424 (11) 0.0601 (12) 0.0575 (13) 0.0005 (9) 0.0206 (10) −0.0064 (10)
N1 0.0397 (9) 0.0613 (10) 0.0417 (9) −0.0045 (7) 0.0145 (7) −0.0069 (8)
O1 0.0552 (8) 0.0442 (7) 0.0473 (8) 0.0008 (6) −0.0006 (6) 0.0016 (6)
O2 0.0368 (7) 0.0785 (9) 0.0437 (7) −0.0124 (7) 0.0127 (6) −0.0136 (7)
O3 0.0735 (11) 0.0620 (9) 0.1266 (15) 0.0204 (8) 0.0559 (11) 0.0408 (10)

Geometric parameters (Å, º)

C1—C2 1.511 (3) C15—H15 0.9300
C1—H1A 0.9600 C16—H16 0.9300
C1—H1B 0.9600 C17—O1 1.424 (2)
C1—H1C 0.9600 C17—H17A 0.9600
C2—C7 1.379 (3) C17—H17B 0.9600
C2—C3 1.382 (3) C17—H17C 0.9600
C3—C4 1.379 (3) C18—O3 1.218 (2)
C3—H3 0.9300 C18—C19 1.471 (3)
C4—C5 1.391 (2) C19—C25 1.398 (3)
C4—H4 0.9300 C19—C20 1.400 (2)
C5—C6 1.383 (3) C20—C28 1.393 (2)
C5—C8 1.471 (2) C20—C21 1.523 (2)
C6—C7 1.386 (3) C21—C23 1.535 (2)
C6—H6 0.9300 C21—C22 1.539 (2)
C7—H7 0.9300 C21—C24 1.543 (3)
C8—N1 1.279 (2) C22—H22A 0.9700
C8—C10 1.508 (2) C22—H22B 0.9700
C9—O2 1.472 (2) C23—H23A 0.9600
C9—C22 1.509 (2) C23—H23B 0.9600
C9—C18 1.532 (2) C23—H23C 0.9600
C9—C10 1.553 (2) C24—H24A 0.9600
C10—C11 1.516 (2) C24—H24B 0.9600
C10—H10 0.9800 C24—H24C 0.9600
C11—C16 1.381 (2) C25—C26 1.374 (3)
C11—C12 1.398 (2) C25—H25 0.9300
C12—C13 1.376 (2) C26—C27 1.373 (3)
C12—H12 0.9300 C26—H26 0.9300
C13—C14 1.385 (2) C27—C28 1.369 (3)
C13—H13 0.9300 C27—H27 0.9300
C14—O1 1.367 (2) C28—H28 0.9300
C14—C15 1.385 (2) N1—O2 1.4077 (18)
C15—C16 1.385 (2)
C2—C1—H1A 109.5 C15—C16—H16 118.9
C2—C1—H1B 109.5 O1—C17—H17A 109.5
H1A—C1—H1B 109.5 O1—C17—H17B 109.5
C2—C1—H1C 109.5 H17A—C17—H17B 109.5
H1A—C1—H1C 109.5 O1—C17—H17C 109.5
H1B—C1—H1C 109.5 H17A—C17—H17C 109.5
C7—C2—C3 117.65 (18) H17B—C17—H17C 109.5
C7—C2—C1 121.3 (2) O3—C18—C19 121.48 (17)
C3—C2—C1 121.1 (2) O3—C18—C9 119.15 (17)
C4—C3—C2 121.63 (19) C19—C18—C9 119.35 (15)
C4—C3—H3 119.2 C25—C19—C20 120.11 (17)
C2—C3—H3 119.2 C25—C19—C18 117.94 (17)
C3—C4—C5 120.47 (19) C20—C19—C18 121.93 (16)
C3—C4—H4 119.8 C28—C20—C19 117.51 (17)
C5—C4—H4 119.8 C28—C20—C21 120.75 (16)
C6—C5—C4 118.20 (17) C19—C20—C21 121.68 (15)
C6—C5—C8 120.53 (16) C20—C21—C23 108.96 (15)
C4—C5—C8 121.27 (16) C20—C21—C22 109.74 (14)
C5—C6—C7 120.58 (19) C23—C21—C22 111.93 (14)
C5—C6—H6 119.7 C20—C21—C24 110.92 (15)
C7—C6—H6 119.7 C23—C21—C24 108.35 (15)
C2—C7—C6 121.4 (2) C22—C21—C24 106.94 (15)
C2—C7—H7 119.3 C9—C22—C21 116.73 (15)
C6—C7—H7 119.3 C9—C22—H22A 108.1
N1—C8—C5 120.37 (16) C21—C22—H22A 108.1
N1—C8—C10 114.79 (15) C9—C22—H22B 108.1
C5—C8—C10 124.83 (15) C21—C22—H22B 108.1
O2—C9—C22 109.03 (13) H22A—C22—H22B 107.3
O2—C9—C18 104.09 (14) C21—C23—H23A 109.5
C22—C9—C18 111.95 (14) C21—C23—H23B 109.5
O2—C9—C10 104.17 (13) H23A—C23—H23B 109.5
C22—C9—C10 116.45 (14) C21—C23—H23C 109.5
C18—C9—C10 110.12 (14) H23A—C23—H23C 109.5
C8—C10—C11 114.65 (14) H23B—C23—H23C 109.5
C8—C10—C9 100.47 (13) C21—C24—H24A 109.5
C11—C10—C9 116.92 (14) C21—C24—H24B 109.5
C8—C10—H10 108.1 H24A—C24—H24B 109.5
C11—C10—H10 108.1 C21—C24—H24C 109.5
C9—C10—H10 108.1 H24A—C24—H24C 109.5
C16—C11—C12 117.49 (15) H24B—C24—H24C 109.5
C16—C11—C10 120.28 (15) C26—C25—C19 120.7 (2)
C12—C11—C10 122.23 (15) C26—C25—H25 119.7
C13—C12—C11 120.88 (16) C19—C25—H25 119.7
C13—C12—H12 119.6 C27—C26—C25 119.34 (19)
C11—C12—H12 119.6 C27—C26—H26 120.3
C12—C13—C14 120.61 (16) C25—C26—H26 120.3
C12—C13—H13 119.7 C28—C27—C26 120.7 (2)
C14—C13—H13 119.7 C28—C27—H27 119.7
O1—C14—C15 124.73 (16) C26—C27—H27 119.7
O1—C14—C13 115.80 (15) C27—C28—C20 121.7 (2)
C15—C14—C13 119.47 (16) C27—C28—H28 119.2
C16—C15—C14 119.23 (16) C20—C28—H28 119.2
C16—C15—H15 120.4 C8—N1—O2 109.70 (14)
C14—C15—H15 120.4 C14—O1—C17 117.26 (15)
C11—C16—C15 122.30 (16) N1—O2—C9 109.94 (12)
C11—C16—H16 118.9

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5177).

References

  1. Akhazzane, M., Zouihri, H., Bennani, A. K., Kerbal, A. & Al Houari, G. (2011). Acta Cryst. E67, o1862. [DOI] [PMC free article] [PubMed]
  2. Akhazzane, M., Zouihri, H., Daran, J.-C., Kerbal, A. & Al Houari, G. (2010). Acta Cryst. E66, o3067. [DOI] [PMC free article] [PubMed]
  3. Al Houari, G., Bennani, A. K., Bennani, B., Daoudi, M., Benlarbi, N., El Yazidi, M., Garrigues, B. & Kerbal, A. (2010). J. Mar. Chim. Heterocycl. 9, 36–43.
  4. Al Houari, G., Kerbal, A., Bennani, B., Baba, M. F., Daoudi, M. & Ben Hadda, T. (2008). ARKIVOC, xii, 42–50.
  5. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Mahfoud, A., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o873–o874. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015022033/rz5177sup1.cif

e-71-0o981-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022033/rz5177Isup2.hkl

e-71-0o981-Isup2.hkl (428.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022033/rz5177Isup3.cml

. DOI: 10.1107/S2056989015022033/rz5177fig1.tif

The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

CCDC reference: 1437668

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES