Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 28;71(Pt 12):o993–o994. doi: 10.1107/S2056989015022215

Crystal structure of 6-de­oxy-α-l-psico­furan­ose

Akihide Yoshihara a, Tomohiko Ishii b,*, Tatsuya Kamakura b, Hiroaki Taguchi b, Kazuhiro Fukada c
PMCID: PMC4719940  PMID: 26870568

Abstract

The title compound, C6H12O5, was crystallized from an aqueous solution of 6-de­oxy-l-psicose (6-de­oxy-l-allulose, (3S,4S,5S)-1,3,4,5-tetra­hydroxy­hexan-2-one), and the mol­ecule was confirmed as α-furan­ose with a 3 T 4 (or E 4) conformation, which is a predominant tautomer in solution. This five-membered furan­ose ring structure is the second example in the field of the 6-de­oxy-ketohexose family. The cell volume of the title compound [742.67 (7) Å3, Z = 4 at room temperature] is only 1.4% smaller than that of β-d-psico­pyran­ose, C6H12O6 (753.056 Å3, Z = 4 at room temperature).

Keywords: crystal structure, hydrogen bonding, de­oxy compound, rare sugar

Related literature  

For the predominant tautomer, α-furan­ose, of 6-de­oxy-l-psicose in aqueous solution, see: Yoshihara et al. (2015). For the crystal structure of chiral β-d-psicose, see: Kwiecień et al. (2008); Fukada et al. (2010). For the crystal structure of racemic β-D,l-psicose, see: Ishii et al. (2015). For the synthesis of 6-de­oxy-l-psicose, see: Shompoosang et al. (2014). For the crystal structures of 6-de­oxy-α-l-sorbo­furan­ose and 6-de­oxy-α-d-sorbo­furan­ose, see: Swaminathan et al. (1979); Rao et al. (1981); Jones et al. (2006).graphic file with name e-71-0o993-scheme1.jpg

Experimental  

Crystal data  

  • C6H12O5

  • M r = 164.16

  • Orthorhombic, Inline graphic

  • a = 5.7853 (3) Å

  • b = 8.9442 (5) Å

  • c = 14.3528 (8) Å

  • V = 742.69 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.12 mm−1

  • T = 296 K

  • 0.10 × 0.10 × 0.10 mm

Data collection  

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.732, T max = 0.894

  • 13299 measured reflections

  • 1358 independent reflections

  • 1330 reflections with F 2 > 2σ(F 2)

  • R int = 0.072

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.065

  • S = 1.08

  • 1358 reflections

  • 105 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack x determined using 521 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons & Flack, 2004)

  • Absolute structure parameter: 0.03 (8)

Data collection: RAPID-AUTO (Rigaku, 2009); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015022215/is5433sup1.cif

e-71-0o993-sup1.cif (399.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022215/is5433Isup2.hkl

e-71-0o993-Isup2.hkl (110KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022215/is5433Isup3.png

ORTEP . DOI: 10.1107/S2056989015022215/is5433fig1.tif

An ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

a . DOI: 10.1107/S2056989015022215/is5433fig2.tif

A packing diagram of the title compound viewed down the a-axis, showing the hydrogen-bonding network (green dashed lines).

CCDC reference: 1437931

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O5i 0.82 2.02 2.839 (2) 177
O2—H2A⋯O1ii 0.82 2.13 2.819 (2) 142
O2—H2A⋯O3 0.82 2.08 2.592 (2) 121
O3—H3A⋯O2iii 0.82 1.93 2.732 (2) 166
O4—H4A⋯O3iv 0.82 2.24 2.902 (2) 138
O4—H4A⋯O4iv 0.82 2.26 2.987 (2) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to Grants-in-Aid for Rare Sugar Research of Kagawa University.

supplementary crystallographic information

S1. Comment

Psicose is classified into a rare sugar, and hardly exists in nature. In this study we prepare a single-crystal of 6-deoxy-L-psicose (Fig. 1), which is obtained by enzymatic isomerization of L-rhamnose, and investigate the structure by X-ray crystal analysis. The space group of this compound is orthorhombic P212121, which is the same as that of β-D-psicopyranose (cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010). The molecular weight of 6-deoxy-L-psicose (C6H12O5; m.w. = 164.16) is about 10% smaller than that of D-psicose (180.16). On the other hand, the cell volume of 6-deoxy-α-L-psicofuranose is 742.67 (7) Å3 at r.t., which is a mere 1.4% smaller than that of β-D-psicopyranose (753.056 Å3 at r.t., cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010). This imbalance of decreasing suggests that a weaker intermolecular interaction caused by a smaller molecular density can be expected. The melting point of 6-deoxy-α-L-psicofuranose has been observed to be 76 °C, which is about 30 °C lower than that of psicose (107.6 °C). This lower melting point is consistent with the suggested weaker intermolecular interaction.

We found that 6-deoxy-L-psicose molecules form a five-membered α-furanose ring structure in crystal. In the crystals of ketohexoses so far, six-membered pyranose ring structures have been mainly confirmed (cf. D-psicose; Kwiecień et al., 2008; Fukada et al., 2010, 1-deoxy-L-sorbose; Jones et al., 2006). Because of the deoxygenation in the 6-deoxy-L-psicose molecule, the carbonyl group at the C-2 position cannot form hemiacetal with the C-6 but with the C-5 hydroxyl group. It should be noted that the crystal structure of 6-deoxy-L-sorbose, C-4 epimer of 6-deoxy-L-psicose, was reported to be α-furanose; C3'-exo-C4'-endo, 3T4 (Swaminathan et al., 1979). Therefore, the α-furanose structure observed in the crystal of 6-deoxy-L-psicose is the second example in 6-deoxy-ketohexose family, with 3T4 (or E4) conformation. An intramolecular hydrogen bond (O3—H3A···O5) has been observed both in a chiral D-psicose (Kwiecień et al., 2008; Fukada et al., 2010) and a racemic D,L-psicose (Ishii et al., 2015). This comes from two hydroxy groups located in a shorter distance from each other because of both axial conformations connecting to the C-3 and C-5 positions. On the other hand in the 6-deoxy-L-psicose, such an intramolecular hydrogen bond is not observed, because the hydroxy group at a C-5 position has been used for creating the ring structure. Intermolecular hydrogen bonds (O3—H3A···O2 and O1—H1A···O5) are also confirmed along the b-axis, and O4—H4A···O4 along the a-axis, as shown in Fig. 2.

S2. Experimental

6-Deoxy-L-psicose was prepared from L-rhamnose by immobilized L-rhamnose isomerase and immobilized D-tagatose 3-epimerase in the batch reaction (Shompoosang et al., 2014). After this reaction was reached equilibrium, the reaction mixture containing 6-deoxy-L-psicose was separated by column chromatography. The purified 6-deoxy-L-psicose solution was concentrated to 80% by evaporation. A seed crystal of 6-deoxy-L-psicose was added to the 80% 6-deoxy-L-psicose solution, which was kept at 30 °C. The tautomer ratio in aqueous solution at 30 °C is obtained as α-furanose: β-furanose: acyclic form = 72.9: 24.5: 2.69 (Yoshihara et al., 2015). After one day, single crystals were obtained.

S3. Refinement

H atoms bounded to methine-type C (H3B, H4B, H5A) were positioned geometrically and refined using a riding model with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to methylene-type C (H1B, H1C) were positioned geometrically and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to methyl-type C (H6A, H6B, H6C) were positioned geometrically and refined using a riding model with C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to O (H1A, H2A, H3A, H4A) were positioned geometrically and refined using a riding model with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O), allowing for free rotation of the OH groups.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A packing diagram of the title compound viewed down the a-axis, showing the hydrogen-bonding network (green dashed lines).

Crystal data

C6H12O5 Dx = 1.468 Mg m3
Mr = 164.16 Cu Kα radiation, λ = 1.54187 Å
Orthorhombic, P212121 Cell parameters from 7546 reflections
a = 5.7853 (3) Å θ = 3.1–68.3°
b = 8.9442 (5) Å µ = 1.12 mm1
c = 14.3528 (8) Å T = 296 K
V = 742.69 (7) Å3 Block, colorless
Z = 4 0.10 × 0.10 × 0.10 mm
F(000) = 352.00

Data collection

Rigaku R-AXIS RAPID diffractometer 1330 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.072
ω scans θmax = 68.2°, θmin = 5.8°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −6→6
Tmin = 0.732, Tmax = 0.894 k = −10→10
13299 measured reflections l = −17→17
1358 independent reflections

Refinement

Refinement on F2 H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0207P)2 + 0.1732P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065 (Δ/σ)max < 0.001
S = 1.08 Δρmax = 0.15 e Å3
1358 reflections Δρmin = −0.14 e Å3
105 parameters Extinction correction: SHELXL
0 restraints Extinction coefficient: 0.0144 (15)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack x determined using 521 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.03 (8)
Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.1489 (3) 0.60359 (18) 0.19568 (11) 0.0370 (4)
O2 0.5730 (3) 0.45936 (18) 0.23138 (13) 0.0419 (4)
O3 0.5171 (2) 0.68432 (15) 0.34295 (10) 0.0274 (3)
O4 0.8265 (3) 0.72675 (18) 0.47842 (10) 0.0371 (4)
O5 0.8957 (3) 0.41852 (14) 0.32155 (9) 0.0297 (4)
C1 0.9314 (4) 0.5411 (2) 0.17460 (13) 0.0299 (5)
C2 0.7827 (3) 0.5218 (2) 0.26045 (13) 0.0239 (4)
C3 0.7513 (3) 0.6680 (2) 0.31678 (13) 0.0217 (4)
C4 0.9029 (3) 0.6417 (2) 0.40186 (13) 0.0243 (4)
C5 0.8846 (4) 0.4748 (2) 0.41607 (13) 0.0288 (5)
C6 1.0749 (5) 0.4055 (3) 0.47269 (18) 0.0472 (6)
H1A 1.14196 0.69485 0.19094 0.0444*
H1C 0.95355 0.44456 0.14516 0.0359*
H1B 0.85181 0.60539 0.13061 0.0359*
H2A 0.46647 0.5151 0.24595 0.0503*
H3A 0.47011 0.76663 0.32637 0.0328*
H3B 0.80479 0.75478 0.28114 0.0261*
H4A 0.93817 0.75318 0.50951 0.0445*
H4B 1.06309 0.66817 0.38712 0.0291*
H5A 0.73436 0.45008 0.44361 0.0346*
H6A 1.0678 0.44263 0.53538 0.0566*
H6B 1.05675 0.29881 0.47311 0.0566*
H6C 1.22165 0.4308 0.44577 0.0566*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0306 (8) 0.0317 (8) 0.0486 (9) 0.0022 (7) 0.0045 (7) 0.0026 (7)
O2 0.0265 (8) 0.0310 (9) 0.0683 (11) −0.0008 (7) −0.0091 (7) −0.0203 (8)
O3 0.0221 (7) 0.0249 (8) 0.0351 (7) 0.0048 (6) −0.0004 (6) 0.0008 (6)
O4 0.0320 (8) 0.0467 (10) 0.0325 (8) 0.0046 (8) −0.0052 (6) −0.0198 (7)
O5 0.0448 (9) 0.0177 (7) 0.0266 (7) 0.0073 (6) −0.0022 (7) 0.0004 (5)
C1 0.0384 (11) 0.0263 (11) 0.0249 (10) 0.0058 (9) −0.0033 (8) −0.0040 (8)
C2 0.0267 (11) 0.0170 (9) 0.0282 (9) 0.0018 (8) −0.0066 (8) −0.0025 (7)
C3 0.0223 (9) 0.0165 (9) 0.0262 (9) 0.0002 (8) 0.0014 (8) −0.0022 (7)
C4 0.0231 (9) 0.0244 (11) 0.0253 (9) 0.0001 (9) −0.0000 (8) −0.0055 (8)
C5 0.0333 (11) 0.0283 (11) 0.0248 (9) 0.0004 (9) −0.0008 (8) 0.0004 (8)
C6 0.0607 (16) 0.0405 (14) 0.0404 (12) 0.0144 (12) −0.0125 (12) 0.0049 (10)

Geometric parameters (Å, º)

O1—C1 1.410 (3) O2—H2A 0.820
O2—C2 1.399 (2) O3—H3A 0.820
O3—C3 1.414 (2) O4—H4A 0.820
O4—C4 1.408 (2) C1—H1C 0.970
O5—C2 1.432 (2) C1—H1B 0.970
O5—C5 1.448 (2) C3—H3B 0.980
C1—C2 1.512 (3) C4—H4B 0.980
C2—C3 1.548 (3) C5—H5A 0.980
C3—C4 1.522 (3) C6—H6A 0.960
C4—C5 1.510 (3) C6—H6B 0.960
C5—C6 1.502 (3) C6—H6C 0.960
O1—H1A 0.820
C2—O5—C5 109.24 (14) O1—C1—H1C 109.164
O1—C1—C2 112.20 (16) O1—C1—H1B 109.167
O2—C2—O5 108.73 (15) C2—C1—H1C 109.166
O2—C2—C1 107.19 (16) C2—C1—H1B 109.170
O2—C2—C3 113.01 (16) H1C—C1—H1B 107.872
O5—C2—C1 108.26 (16) O3—C3—H3B 111.067
O5—C2—C3 106.18 (14) C2—C3—H3B 111.068
C1—C2—C3 113.31 (16) C4—C3—H3B 111.066
O3—C3—C2 109.81 (15) O4—C4—H4B 109.543
O3—C3—C4 110.80 (15) C3—C4—H4B 109.538
C2—C3—C4 102.75 (15) C5—C4—H4B 109.537
O4—C4—C3 111.22 (16) O5—C5—H5A 109.822
O4—C4—C5 114.02 (16) C4—C5—H5A 109.816
C3—C4—C5 102.76 (15) C6—C5—H5A 109.811
O5—C5—C4 102.34 (14) C5—C6—H6A 109.470
O5—C5—C6 109.33 (18) C5—C6—H6B 109.472
C4—C5—C6 115.43 (18) C5—C6—H6C 109.471
C1—O1—H1A 109.468 H6A—C6—H6B 109.472
C2—O2—H2A 109.470 H6A—C6—H6C 109.470
C3—O3—H3A 109.471 H6B—C6—H6C 109.473
C4—O4—H4A 109.477
C2—O5—C5—C4 −34.64 (18) O5—C2—C3—C4 12.06 (17)
C2—O5—C5—C6 −157.50 (14) C1—C2—C3—O3 135.42 (15)
C5—O5—C2—O2 −107.81 (16) C1—C2—C3—C4 −106.65 (16)
C5—O5—C2—C1 136.05 (14) O3—C3—C4—O4 −37.4 (2)
C5—O5—C2—C3 14.07 (18) O3—C3—C4—C5 85.02 (16)
O1—C1—C2—O2 −179.95 (14) C2—C3—C4—O4 −154.60 (14)
O1—C1—C2—O5 −62.8 (2) C2—C3—C4—C5 −32.21 (16)
O1—C1—C2—C3 54.7 (2) O4—C4—C5—O5 161.44 (14)
O2—C2—C3—O3 13.2 (2) O4—C4—C5—C6 −79.9 (2)
O2—C2—C3—C4 131.17 (15) C3—C4—C5—O5 40.95 (18)
O5—C2—C3—O3 −105.88 (16) C3—C4—C5—C6 159.59 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O5i 0.82 2.02 2.839 (2) 177
O2—H2A···O1ii 0.82 2.13 2.819 (2) 142
O2—H2A···O3 0.82 2.08 2.592 (2) 121
O3—H3A···O2iii 0.82 1.93 2.732 (2) 166
O4—H4A···O3iv 0.82 2.24 2.902 (2) 138
O4—H4A···O4iv 0.82 2.26 2.987 (2) 148

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+1/2; (iv) x+1/2, −y+3/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5433).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  2. Fukada, K., Ishii, T., Tanaka, K., Yamaji, M., Yamaoka, Y., Kobashi, K. & Izumori, K. (2010). Bull. Chem. Soc. Jpn, 83, 1193–1197.
  3. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  4. Ishii, T., Sakane, G., Yoshihara, A., Fukada, K. & Senoo, T. (2015). Acta Cryst. E71, o289–o290. [DOI] [PMC free article] [PubMed]
  5. Jones, N. A., Fanefjord, M., Jenkinson, S. F., Fleet, G. W. J. & Watkin, D. J. (2006). Acta Cryst. E62, o4663–o4665.
  6. Kwiecień, A., Ślepokura, K. & Lis, T. (2008). Carbohydr. Res. 343, 2336–2339. [DOI] [PubMed]
  7. Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
  8. Rao, S. T., Swaminathan, P. & Sundaralingam, M. (1981). Carbohydr. Res. 89, 151–154.
  9. Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  10. Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Shompoosang, S., Yoshihara, A., Uechi, K., Asada, Y. & Morimoto, K. (2014). Biosci. Biotechnol. Biochem. 78, 317–325. [DOI] [PubMed]
  13. Swaminathan, P., Anderson, L. & Sundaralingam, M. (1979). Carbohydr. Res. 75, 1–10.
  14. Yoshihara, A., Sato, M. & Fukada, K. (2015). Chem. Lett. In the press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015022215/is5433sup1.cif

e-71-0o993-sup1.cif (399.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022215/is5433Isup2.hkl

e-71-0o993-Isup2.hkl (110KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022215/is5433Isup3.png

ORTEP . DOI: 10.1107/S2056989015022215/is5433fig1.tif

An ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

a . DOI: 10.1107/S2056989015022215/is5433fig2.tif

A packing diagram of the title compound viewed down the a-axis, showing the hydrogen-bonding network (green dashed lines).

CCDC reference: 1437931

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES