Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 28;71(Pt 12):o995–o996. doi: 10.1107/S2056989015022343

Crystal structure of 4-{[(2,4-di­hydroxy­benzyl­idene)amino]­meth­yl}cyclo­hexane­carb­oxy­lic acid

Muhammad Danish a, Saba Akbar a, Muhammad Nawaz Tahir b,*, Rabia Ayub Butt a, Muhammad Ashfaq a
PMCID: PMC4719941  PMID: 26870569

Abstract

In the title compound, C15H19NO4, the cyclo­hexyl ring adopts a chair conformation with both exocyclic C—C bonds in equatorial orientations. The dihedral angle between the basal plane of cyclo­hexyl ring and the 2,4-di­hydroxy­benzaldehyde moiety is 84.13 (13)°. An intra­molecular O—H⋯N hydrogen bonds closes an S(6) ring. In the crystal, Oc—H⋯Op (c = carb­oxy­lic acid, p = phenol) hydrogen bonds link the mol­ecules into [100] C(13) chains whereas an Op—H⋯Oc hydrogen bond generates [101] C(15) chains. Together, these bonds generate (010) sheets incorporating R 2 2(20) loops. Weak C—H⋯O and C—H⋯π inter­actions also occur.

Keywords: crystal structure, Schiff base, benzaldehyde, hydrogen bonding

Related literature  

For the crystal structures of related Schiff bases, see: Shuja et al. (2006, 2007); Nisar et al. (2011).graphic file with name e-71-0o995-scheme1.jpg

Experimental  

Crystal data  

  • C15H19NO4

  • M r = 277.31

  • Monoclinic, Inline graphic

  • a = 6.2399 (17) Å

  • b = 10.222 (2) Å

  • c = 22.251 (6) Å

  • β = 90.232 (8)°

  • V = 1419.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.33 × 0.27 × 0.14 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.970, T max = 0.988

  • 10670 measured reflections

  • 2580 independent reflections

  • 1222 reflections with I > 2σ(I)

  • R int = 0.095

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.214

  • S = 1.01

  • 2580 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015022343/hb7548sup1.cif

e-71-0o995-sup1.cif (367.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022343/hb7548Isup2.hkl

e-71-0o995-Isup2.hkl (206.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022343/hb7548Isup3.cml

. DOI: 10.1107/S2056989015022343/hb7548fig1.tif

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intra­molecular hydrogen bonding.

. DOI: 10.1107/S2056989015022343/hb7548fig2.tif

A partial packing diagram, showig that mol­ecules form Inline graphic(20) and Inline graphic(15) ring motifs. H atoms not involved in hydrogen-bonding inter­actions are omitted for clarity.

CCDC reference: 1438286

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.88 (5) 1.58 (5) 2.447 (4) 168 (5)
O3—H3⋯N1 0.82 1.92 2.667 (4) 150
O4—H4⋯O2ii 0.82 1.85 2.669 (4) 174
C9—H9⋯O1iii 0.93 2.42 3.338 (5) 170
C14—H14⋯O3iv 0.93 2.60 3.499 (5) 164
C5—H5⋯Cg2v 0.98 2.97 3.772 (5) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by the Ex-Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

S1. Comment

The title compound (I, Fig. 1) is the Schiff base ligand synthesized from tranexamic acid and 2,4-dihydroxybenzaldehyde. The reported crystal structures of the Schiff bases of tranexamic acid are 2-[(4-carboxycyclohexyl)methylammoniomethyl]-6-hydroxyphenolate (Shuja et al., 2006), 4-((E)-(5-bromo-2-hydroxybenzylidene)aminomethyl)cyclohexane-1-carboxylic acid (Shuja et al., 2007) and 4-({[(E)-pyridin-3-ylmethylidene]amino}-methyl)cyclohexanecarboxylic acid (Nisar et al., 2011). The title compound is synthesized for various studies and complexation with different metals.

In (I), the basal plane A (C3/C4/C6/C7) of cyclohexyl ring and the part of 2,4-dihydroxybenzaldehyde B (C9—C14) are planar with r. m. s. deviation of 0.0101 Å and 0.0387 Å, respectively. The dihedral angle between A/B is 84.13 (13)°. The apical C-atoms C2 and C5 are almost at an equal distance of −0.680 (6) Å and 0.648 (6) Å, respectively from the plane A. The carboxylic part C (O1/C1/O2) is oriented at dihedral angles of 31.6 (3)° from planes A.

There exist S(6) ring motif due to O—H···N interactions (Table 1, Fig. 1). Each molecule is linked to four molecules due to O—H···O interactions (Table 1, Fig. 2) with C(13) and C(15) chains. C(13) chains exist from the 2-hydroxy and carboxyl hydroxy groups, where as C(15) chains are created when 4-hydroxy and carbonyl O-atom interlink. The C9—H9···O1iii [iii = −x, −y + 1, −z] interactions generate R22(20) ring motif (Table 1, Fig. 2). Similarly, the O4—H4···O2ii [ii = x + 1, −y + 3/2, z + 1/2], C9—H9···O1iii and C14—H14···O3iv [iv = −x + 1, y − 1/2, −z + 1/2] interactions complete R33(15) ring motifs. In this way, the alternate R33(15) and R22(20) ring motifs stabilize the molecules in the form of two-dimensional network with base vectors [1 0 0], [0 0 1] in the plane (0 1 0). A C—H···π interaction (Table 1) is also involved in the packing.

S2. Experimental

Tranexamic acid (0.786 g, 5 mmol) and 2,4-dihydroxybenzaldehyde (0.661 g, 5 mmol) were disolved in 10 ml distilled water and 10 ml e thanol separately. These mixture were mixed and refluxed for 4 h to yield orange precipitate. The precipitates obtained were filtered and dried from which light orange plates of (I) were obtained after recrystallization in ethanol after one week.

Yield: 83%

Melting point:512 K.

S3. Refinement

The coordinates of H-atoms of carboxylic acid were refined with constraints. The H-atoms were positioned geometrically (C–H = 0.93 − 0.98 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy and x = 1.2 for other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular hydrogen bonding.

Fig. 2.

Fig. 2.

A partial packing diagram, showig that molecules form R22(20) and R33(15) ring motifs. H atoms not involved in hydrogen-bonding interactions are omitted for clarity.

Crystal data

C15H19NO4 F(000) = 592
Mr = 277.31 Dx = 1.298 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 6.2399 (17) Å Cell parameters from 1222 reflections
b = 10.222 (2) Å θ = 2.7–25.3°
c = 22.251 (6) Å µ = 0.09 mm1
β = 90.232 (8)° T = 296 K
V = 1419.2 (6) Å3 Plate, light orange
Z = 4 0.33 × 0.27 × 0.14 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2580 independent reflections
Radiation source: fine-focus sealed tube 1222 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.095
Detector resolution: 7.80 pixels mm-1 θmax = 25.3°, θmin = 2.7°
ω scans h = −7→7
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −12→8
Tmin = 0.970, Tmax = 0.988 l = −27→27
10670 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0891P)2] where P = (Fo2 + 2Fc2)/3
2580 reflections (Δ/σ)max < 0.001
186 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.0521 (6) 0.7966 (3) −0.09932 (14) 0.0576 (10)
H1 0.082 (8) 0.840 (5) −0.132 (2) 0.086*
O2 −0.2047 (6) 0.9366 (3) −0.07558 (15) 0.0717 (11)
O3 0.0919 (5) 0.5993 (3) 0.30231 (12) 0.0465 (8)
H3 0.0041 0.6040 0.2749 0.070*
O4 0.7509 (5) 0.3799 (3) 0.33996 (14) 0.0549 (9)
H4 0.7673 0.4399 0.3640 0.082*
N1 −0.1192 (6) 0.5339 (3) 0.20228 (15) 0.0426 (10)
C1 −0.1074 (8) 0.8366 (4) −0.06681 (19) 0.0441 (11)
C2 −0.1625 (7) 0.7441 (4) −0.01567 (18) 0.0430 (11)
H2 −0.1976 0.6593 −0.0337 0.052*
C3 −0.3547 (7) 0.7867 (5) 0.0196 (2) 0.0604 (14)
H3A −0.4763 0.7979 −0.0072 0.072*
H3B −0.3256 0.8700 0.0389 0.072*
C4 −0.4078 (7) 0.6832 (5) 0.06750 (19) 0.0563 (13)
H4A −0.5306 0.7123 0.0905 0.068*
H4B −0.4464 0.6020 0.0477 0.068*
C5 −0.2214 (6) 0.6584 (4) 0.10995 (18) 0.0425 (11)
H5 −0.1913 0.7394 0.1320 0.051*
C6 −0.0247 (7) 0.6216 (4) 0.07511 (18) 0.0498 (12)
H6A −0.0470 0.5367 0.0566 0.060*
H6B 0.0958 0.6142 0.1026 0.060*
C7 0.0299 (7) 0.7226 (4) 0.02570 (18) 0.0470 (12)
H7A 0.0706 0.8049 0.0442 0.056*
H7B 0.1505 0.6913 0.0024 0.056*
C8 −0.2828 (7) 0.5528 (4) 0.15533 (18) 0.0454 (12)
H8A −0.4172 0.5768 0.1741 0.054*
H8B −0.3048 0.4708 0.1343 0.054*
C9 0.0253 (7) 0.4422 (4) 0.19944 (18) 0.0418 (11)
H9 0.0123 0.3825 0.1681 0.050*
C10 0.1980 (7) 0.4246 (4) 0.23882 (18) 0.0377 (11)
C11 0.2338 (7) 0.5082 (3) 0.28987 (19) 0.0388 (11)
C12 0.4181 (7) 0.4917 (4) 0.32423 (18) 0.0407 (11)
H12 0.4411 0.5447 0.3576 0.049*
C13 0.5676 (8) 0.3976 (4) 0.30947 (19) 0.0419 (11)
C14 0.5317 (8) 0.3123 (4) 0.26061 (19) 0.0460 (12)
H14 0.6298 0.2467 0.2516 0.055*
C15 0.3522 (7) 0.3274 (4) 0.2270 (2) 0.0466 (12)
H15 0.3296 0.2712 0.1947 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.077 (3) 0.055 (2) 0.041 (2) 0.0053 (17) 0.0165 (19) 0.0106 (15)
O2 0.078 (3) 0.070 (2) 0.068 (2) 0.026 (2) 0.014 (2) 0.0257 (19)
O3 0.054 (2) 0.0480 (18) 0.0371 (18) 0.0076 (16) −0.0024 (15) −0.0005 (14)
O4 0.052 (2) 0.053 (2) 0.059 (2) 0.0024 (16) −0.0121 (18) −0.0066 (16)
N1 0.042 (2) 0.049 (2) 0.037 (2) −0.0004 (18) 0.0041 (19) 0.0091 (17)
C1 0.051 (3) 0.045 (3) 0.036 (3) −0.005 (2) −0.002 (2) 0.001 (2)
C2 0.044 (3) 0.050 (3) 0.036 (2) −0.001 (2) −0.003 (2) 0.006 (2)
C3 0.049 (3) 0.081 (3) 0.051 (3) 0.021 (3) 0.004 (3) 0.011 (3)
C4 0.031 (3) 0.091 (4) 0.046 (3) 0.004 (3) 0.006 (2) 0.013 (3)
C5 0.039 (3) 0.051 (3) 0.038 (3) 0.004 (2) 0.001 (2) 0.000 (2)
C6 0.045 (3) 0.064 (3) 0.040 (3) 0.005 (2) 0.002 (2) 0.012 (2)
C7 0.038 (3) 0.063 (3) 0.040 (3) −0.004 (2) −0.002 (2) 0.009 (2)
C8 0.041 (3) 0.054 (3) 0.042 (3) 0.000 (2) 0.005 (2) 0.005 (2)
C9 0.049 (3) 0.044 (3) 0.032 (3) −0.010 (2) 0.003 (2) −0.001 (2)
C10 0.044 (3) 0.035 (2) 0.035 (2) −0.003 (2) 0.003 (2) −0.0015 (19)
C11 0.053 (3) 0.027 (2) 0.037 (3) −0.001 (2) 0.012 (2) 0.0063 (19)
C12 0.053 (3) 0.034 (2) 0.035 (3) −0.005 (2) −0.005 (2) −0.0015 (19)
C13 0.049 (3) 0.034 (2) 0.043 (3) −0.006 (2) 0.000 (2) 0.003 (2)
C14 0.054 (3) 0.032 (2) 0.052 (3) 0.002 (2) 0.010 (3) −0.006 (2)
C15 0.056 (3) 0.036 (2) 0.047 (3) −0.005 (2) 0.003 (3) −0.010 (2)

Geometric parameters (Å, º)

O1—C1 1.299 (5) C5—C8 1.528 (5)
O1—H1 0.88 (5) C5—H5 0.9800
O2—C1 1.205 (5) C6—C7 1.547 (5)
O3—C11 1.316 (4) C6—H6A 0.9700
O3—H3 0.8200 C6—H6B 0.9700
O4—C13 1.340 (5) C7—H7A 0.9700
O4—H4 0.8200 C7—H7B 0.9700
N1—C9 1.303 (5) C8—H8A 0.9700
N1—C8 1.470 (5) C8—H8B 0.9700
C1—C2 1.520 (5) C9—C10 1.398 (6)
C2—C3 1.501 (5) C9—H9 0.9300
C2—C7 1.526 (6) C10—C15 1.409 (5)
C2—H2 0.9800 C10—C11 1.438 (5)
C3—C4 1.538 (6) C11—C12 1.388 (6)
C3—H3A 0.9700 C12—C13 1.381 (5)
C3—H3B 0.9700 C12—H12 0.9300
C4—C5 1.517 (6) C13—C14 1.411 (5)
C4—H4A 0.9700 C14—C15 1.353 (6)
C4—H4B 0.9700 C14—H14 0.9300
C5—C6 1.502 (5) C15—H15 0.9300
C1—O1—H1 118 (3) C7—C6—H6B 109.1
C11—O3—H3 109.5 H6A—C6—H6B 107.8
C13—O4—H4 109.5 C2—C7—C6 110.5 (3)
C9—N1—C8 122.6 (4) C2—C7—H7A 109.6
O2—C1—O1 124.3 (4) C6—C7—H7A 109.6
O2—C1—C2 122.3 (4) C2—C7—H7B 109.6
O1—C1—C2 113.4 (4) C6—C7—H7B 109.6
C3—C2—C1 113.2 (4) H7A—C7—H7B 108.1
C3—C2—C7 110.8 (4) N1—C8—C5 112.8 (3)
C1—C2—C7 111.2 (3) N1—C8—H8A 109.0
C3—C2—H2 107.1 C5—C8—H8A 109.0
C1—C2—H2 107.1 N1—C8—H8B 109.0
C7—C2—H2 107.1 C5—C8—H8B 109.0
C2—C3—C4 109.7 (4) H8A—C8—H8B 107.8
C2—C3—H3A 109.7 N1—C9—C10 126.5 (4)
C4—C3—H3A 109.7 N1—C9—H9 116.8
C2—C3—H3B 109.7 C10—C9—H9 116.8
C4—C3—H3B 109.7 C9—C10—C15 119.9 (4)
H3A—C3—H3B 108.2 C9—C10—C11 122.4 (4)
C5—C4—C3 112.3 (4) C15—C10—C11 117.5 (4)
C5—C4—H4A 109.1 O3—C11—C12 121.8 (4)
C3—C4—H4A 109.1 O3—C11—C10 119.0 (4)
C5—C4—H4B 109.1 C12—C11—C10 119.3 (4)
C3—C4—H4B 109.1 C13—C12—C11 120.8 (4)
H4A—C4—H4B 107.9 C13—C12—H12 119.6
C6—C5—C4 110.3 (3) C11—C12—H12 119.6
C6—C5—C8 111.8 (3) O4—C13—C12 123.4 (4)
C4—C5—C8 109.6 (3) O4—C13—C14 116.1 (4)
C6—C5—H5 108.3 C12—C13—C14 120.6 (4)
C4—C5—H5 108.3 C15—C14—C13 118.9 (4)
C8—C5—H5 108.3 C15—C14—H14 120.5
C5—C6—C7 112.5 (3) C13—C14—H14 120.5
C5—C6—H6A 109.1 C14—C15—C10 122.8 (4)
C7—C6—H6A 109.1 C14—C15—H15 118.6
C5—C6—H6B 109.1 C10—C15—H15 118.6
O2—C1—C2—C3 3.2 (6) C8—N1—C9—C10 173.6 (4)
O1—C1—C2—C3 −176.7 (4) N1—C9—C10—C15 −174.5 (4)
O2—C1—C2—C7 −122.3 (5) N1—C9—C10—C11 1.4 (6)
O1—C1—C2—C7 57.8 (5) C9—C10—C11—O3 4.4 (6)
C1—C2—C3—C4 176.2 (4) C15—C10—C11—O3 −179.5 (3)
C7—C2—C3—C4 −58.1 (5) C9—C10—C11—C12 −174.8 (4)
C2—C3—C4—C5 57.8 (5) C15—C10—C11—C12 1.3 (5)
C3—C4—C5—C6 −55.2 (5) O3—C11—C12—C13 −178.3 (3)
C3—C4—C5—C8 −178.7 (3) C10—C11—C12—C13 0.8 (6)
C4—C5—C6—C7 53.5 (5) C11—C12—C13—O4 178.0 (4)
C8—C5—C6—C7 175.7 (4) C11—C12—C13—C14 −2.8 (6)
C3—C2—C7—C6 56.7 (5) O4—C13—C14—C15 −178.2 (4)
C1—C2—C7—C6 −176.5 (4) C12—C13—C14—C15 2.5 (6)
C5—C6—C7—C2 −54.6 (5) C13—C14—C15—C10 −0.3 (6)
C9—N1—C8—C5 −96.8 (5) C9—C10—C15—C14 174.6 (4)
C6—C5—C8—N1 63.9 (5) C11—C10—C15—C14 −1.5 (6)
C4—C5—C8—N1 −173.5 (3)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C10–C15 benzene ring.

D—H···A D—H H···A D···A D—H···A
O1—H1···O3i 0.88 (5) 1.58 (5) 2.447 (4) 168 (5)
O3—H3···N1 0.82 1.92 2.667 (4) 150
O4—H4···O2ii 0.82 1.85 2.669 (4) 174
C9—H9···O1iii 0.93 2.42 3.338 (5) 170
C14—H14···O3iv 0.93 2.60 3.499 (5) 164
C5—H5···Cg2v 0.98 2.97 3.772 (5) 140

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x+1, −y+3/2, z+1/2; (iii) −x, −y+1, −z; (iv) −x+1, y−1/2, −z+1/2; (v) −x, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7548).

References

  1. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Nisar, M., Ali, I., Tahir, M. N., Qayum, M. & Marwat, I. K. (2011). Acta Cryst. E67, o1058. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  7. Shuja, S., Ali, S., Khalid, N., Labat, G. & Stoeckli-Evans, H. (2006). Acta Cryst. E62, o4786–o4788.
  8. Shuja, S., Ali, S., Khalid, N. & Parvez, M. (2007). Acta Cryst. E63, o879–o880.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015022343/hb7548sup1.cif

e-71-0o995-sup1.cif (367.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022343/hb7548Isup2.hkl

e-71-0o995-Isup2.hkl (206.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022343/hb7548Isup3.cml

. DOI: 10.1107/S2056989015022343/hb7548fig1.tif

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intra­molecular hydrogen bonding.

. DOI: 10.1107/S2056989015022343/hb7548fig2.tif

A partial packing diagram, showig that mol­ecules form Inline graphic(20) and Inline graphic(15) ring motifs. H atoms not involved in hydrogen-bonding inter­actions are omitted for clarity.

CCDC reference: 1438286

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES