Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 28;71(Pt 12):o1000–o1001. doi: 10.1107/S2056989015022173

Crystal structure of (E)-5-benz­yloxy-2-{[(4-nitro­phen­yl)imino]­meth­yl}phenol

Nadir Ghichi a,*, Mohamed Amine Benaouida a, Ali Benboudiaf a, Hocine Merazig a
PMCID: PMC4719944  PMID: 26870463

Abstract

In the title compound, C20H16N2O4, the mol­ecule adopts an E conformation about the N=C bond. There is an intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif. The nitro­benzene and benz­yloxy rings are inclined to the central benzene ring by 4.34 (10) and 27.66 (11)°, respectively, and to one another by 31.40 (12)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming zigzag chains along [001]. Within the chains there are C—H⋯π inter­actions present. The chains are linked via π–π inter­actions [inter-centroid distance = 3.7048 (15) Å], forming slabs parallel to the bc plane.

Keywords: crystal structure, enol, imine, Schiff base, hydrogen bonding

Related literature  

For the use of Schiff bases in synthesis, see: Arora et al. (2002). For thermochromic, photochromic, biological and pharmacological activities of Schiff base compounds and their derivatives, see: Khandar et al. (2005); Tarafder et al. (2002); Hadjoudis et al. (1987). Schiff bases have been reported to show anti­cancer activity (Desai et al., 2001). For a related structure, see: Tzimopoulos et al. (2010). graphic file with name e-71-o1000-scheme1.jpg

Experimental  

Crystal data  

  • C20H16N2O4

  • M r = 348.35

  • Monoclinic, Inline graphic

  • a = 15.3407 (5) Å

  • b = 9.5618 (3) Å

  • c = 11.7616 (4) Å

  • β = 100.615 (1)°

  • V = 1695.72 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.03 × 0.02 × 0.01 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 14260 measured reflections

  • 3302 independent reflections

  • 2389 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.146

  • S = 1.04

  • 3302 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015022173/su5239sup1.cif

e-71-o1000-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022173/su5239Isup2.hkl

e-71-o1000-Isup2.hkl (181.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022173/su5239Isup3.cml

. DOI: 10.1107/S2056989015022173/su5239fig1.tif

View of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as a dashed line (see Table 1).

c . DOI: 10.1107/S2056989015022173/su5239fig2.tif

A view along the c axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1).

CCDC reference: 1437973

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.599 (2) 148
C9—H9⋯O2i 0.93 2.56 3.476 (2) 168
C10—H10⋯Cg3i 0.93 2.87 3.754 (2) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank all researchers of the CHEMS Research Unit for their valuable assistance and MESRS (Algeria) for financial support.

supplementary crystallographic information

S1. Commentary

Schiff bases are extremely useful in the preparation of various compounds (Arora et al., 2002), and have been shown to have photochromic and thermochromic properties (Hadjoudis et al., 1987). The importance of imine derivatives has increased due to the fact that they have been shown to have anti-cancer properties (Desai et al., 2001; Khandar et al., 2005). The presence of a nitro group in various molecules and Schiff base derivatives, especially in the p-position, has an influence on the effectiveness of bacteriostatics (Tarafder et al., 2002). The title Schiff base incorporates a nitro group in the p-position and herein we report on its synthesis and crystal structure.

The molecular structure of the title compound is show in Fig 1. The molecule adopts an E conformation about the N1═C7 bond [1.284 (2) Å]. The nitro­benzene and benzyl­oxy rings are inclined to the central benzene ring by 4.34 (10) and 27.66 (11) °, respectively, and to one another by 31.40 (12) °. There is an intra­molecular O—H···N hydrogen bond forming an S(6) ring motif (Table 1).

In the crystal, molecules are linked via N—H···O hydrogen bonds forming zigzag chains along [001]. Within the chains there are C—H···π inter­actions present (Table 1 and Fig. 2). The chains are linked via slipped parallel π–π inter­actions forming slabs parallel to the bc plane [Cg3···Cg3i = 3.7048 (15) Å; Cg3 is the centroid of ring C15—C20; inter-planar distance = 3.600 (11) Å; slippage = 0.572 Å; symmetry code: (i) -x + 2, -y + 1, -z].

S2. Synthesis and crystallisation

A mixture of 4-nitro­benzene­amine and 4-benzyl­oxy-2-hy­droxy­benzaldehyde in ethanol or methanol was refluxed for 2 h. On completion of the reaction, the orange precipitate formed was crystallized in a mixture of tetra­hydro­furan and chloro­form (1:2), giving very small orange crystals after one week.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Methine H atom H7 was freely refined. The OH and other C-bound H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H = 0.93-1.00 Å with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bond is shown as a dashed line (see Table 1).

Fig. 2.

Fig. 2.

A view along the c axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1).

Crystal data

C20H16N2O4 Z = 4
Mr = 348.35 F(000) = 728
Monoclinic, P21/c Dx = 1.364 Mg m3
a = 15.3407 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.5618 (3) Å µ = 0.10 mm1
c = 11.7616 (4) Å T = 293 K
β = 100.615 (1)° Block, orange
V = 1695.72 (10) Å3 0.03 × 0.02 × 0.01 mm

Data collection

Bruker APEXII CCD diffractometer 2389 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.020
Graphite monochromator θmax = 26.0°, θmin = 2.8°
phi and ω scans h = −18→18
14260 measured reflections k = −10→11
3302 independent reflections l = −11→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: mixed
wR(F2) = 0.146 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.5493P] where P = (Fo2 + 2Fc2)/3
3302 reflections (Δ/σ)max < 0.001
239 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.13 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47868 (9) 0.50409 (16) 0.17069 (12) 0.0717 (5)
O2 0.75000 (8) 0.39891 (15) 0.06771 (11) 0.0637 (5)
O3 0.11551 (13) 0.4282 (3) 0.61135 (19) 0.1135 (9)
O4 0.20529 (14) 0.3185 (2) 0.74236 (18) 0.1087 (9)
N1 0.44170 (10) 0.40083 (16) 0.36061 (13) 0.0544 (5)
N2 0.18708 (14) 0.3734 (2) 0.6477 (2) 0.0786 (8)
C1 0.25402 (13) 0.3766 (2) 0.57425 (18) 0.0618 (7)
C2 0.33415 (15) 0.3141 (2) 0.61163 (18) 0.0701 (8)
C3 0.39794 (14) 0.3190 (2) 0.54255 (17) 0.0676 (7)
C4 0.38141 (12) 0.38758 (18) 0.43716 (15) 0.0528 (6)
C5 0.29945 (14) 0.4494 (3) 0.40209 (19) 0.0735 (8)
C6 0.23565 (14) 0.4436 (3) 0.4701 (2) 0.0792 (9)
C7 0.51738 (12) 0.33921 (19) 0.37785 (16) 0.0525 (6)
C8 0.57800 (11) 0.35446 (18) 0.29908 (14) 0.0483 (5)
C9 0.66038 (12) 0.2898 (2) 0.32123 (15) 0.0568 (6)
C10 0.72109 (12) 0.3028 (2) 0.24852 (15) 0.0567 (6)
C11 0.69764 (11) 0.38241 (19) 0.14824 (14) 0.0500 (5)
C12 0.61596 (12) 0.4477 (2) 0.12285 (15) 0.0543 (6)
C13 0.55691 (11) 0.43658 (19) 0.19724 (14) 0.0508 (5)
C14 0.83798 (13) 0.3485 (3) 0.09251 (18) 0.0690 (7)
C15 0.88052 (12) 0.3718 (2) −0.01124 (17) 0.0624 (7)
C16 0.93985 (15) 0.2759 (3) −0.0378 (2) 0.0834 (9)
C17 0.98237 (16) 0.2974 (4) −0.1306 (3) 0.0970 (13)
C18 0.96510 (16) 0.4138 (4) −0.1971 (2) 0.0912 (10)
C19 0.90594 (17) 0.5082 (3) −0.1720 (2) 0.0876 (10)
C20 0.86397 (15) 0.4885 (3) −0.0794 (2) 0.0762 (8)
H1 0.44953 0.48980 0.22138 0.1076*
H2 0.34574 0.26878 0.68277 0.0842*
H3 0.45245 0.27576 0.56716 0.0811*
H5 0.28726 0.49561 0.33137 0.0882*
H6 0.18052 0.48488 0.44544 0.0950*
H7 0.5357 (12) 0.276 (2) 0.4452 (17) 0.062 (5)*
H9 0.67529 0.23560 0.38762 0.0681*
H10 0.77623 0.25960 0.26603 0.0680*
H12 0.60088 0.49934 0.05509 0.0652*
H14A 0.83806 0.24960 0.11074 0.0829*
H14B 0.87111 0.39755 0.15887 0.0829*
H16 0.95179 0.19552 0.00689 0.1000*
H17 1.02292 0.23183 −0.14745 0.1165*
H18 0.99370 0.42830 −0.25926 0.1093*
H19 0.89342 0.58753 −0.21781 0.1051*
H20 0.82390 0.55508 −0.06297 0.0914*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0639 (8) 0.0925 (11) 0.0626 (8) 0.0249 (7) 0.0218 (7) 0.0220 (7)
O2 0.0551 (7) 0.0892 (10) 0.0499 (7) 0.0068 (6) 0.0181 (6) 0.0035 (6)
O3 0.0819 (12) 0.1413 (18) 0.1321 (17) 0.0066 (12) 0.0585 (12) 0.0054 (14)
O4 0.1263 (16) 0.1218 (16) 0.0952 (13) −0.0091 (12) 0.0656 (12) 0.0136 (12)
N1 0.0550 (8) 0.0608 (9) 0.0494 (8) 0.0015 (7) 0.0149 (7) 0.0025 (7)
N2 0.0811 (13) 0.0727 (12) 0.0937 (15) −0.0168 (10) 0.0470 (12) −0.0127 (11)
C1 0.0665 (12) 0.0587 (11) 0.0671 (12) −0.0115 (9) 0.0302 (10) −0.0083 (9)
C2 0.0811 (14) 0.0734 (13) 0.0615 (12) 0.0013 (11) 0.0279 (11) 0.0114 (10)
C3 0.0662 (12) 0.0766 (14) 0.0640 (12) 0.0102 (10) 0.0226 (10) 0.0130 (10)
C4 0.0555 (10) 0.0540 (10) 0.0512 (10) −0.0028 (8) 0.0158 (8) −0.0027 (8)
C5 0.0669 (12) 0.0925 (16) 0.0651 (13) 0.0143 (11) 0.0225 (10) 0.0187 (11)
C6 0.0610 (12) 0.0987 (17) 0.0827 (15) 0.0133 (11) 0.0258 (11) 0.0124 (13)
C7 0.0574 (10) 0.0537 (10) 0.0476 (10) −0.0012 (8) 0.0132 (8) 0.0031 (8)
C8 0.0526 (9) 0.0518 (9) 0.0416 (9) −0.0008 (7) 0.0117 (7) −0.0008 (7)
C9 0.0600 (10) 0.0633 (11) 0.0470 (9) 0.0056 (8) 0.0098 (8) 0.0098 (8)
C10 0.0519 (9) 0.0671 (12) 0.0514 (10) 0.0083 (8) 0.0106 (8) 0.0041 (8)
C11 0.0505 (9) 0.0587 (10) 0.0419 (9) −0.0026 (7) 0.0118 (7) −0.0051 (7)
C12 0.0589 (10) 0.0625 (11) 0.0423 (9) 0.0056 (8) 0.0112 (8) 0.0074 (8)
C13 0.0513 (9) 0.0547 (10) 0.0468 (9) 0.0047 (7) 0.0103 (7) 0.0018 (8)
C14 0.0561 (11) 0.0931 (15) 0.0595 (12) 0.0055 (10) 0.0148 (9) 0.0024 (10)
C15 0.0484 (10) 0.0841 (14) 0.0569 (11) −0.0077 (9) 0.0152 (8) −0.0163 (10)
C16 0.0680 (13) 0.1007 (18) 0.0825 (15) 0.0113 (12) 0.0169 (12) −0.0093 (13)
C17 0.0651 (14) 0.133 (3) 0.0981 (19) 0.0109 (15) 0.0285 (14) −0.0418 (19)
C18 0.0712 (14) 0.140 (2) 0.0700 (15) −0.0268 (16) 0.0326 (12) −0.0273 (16)
C19 0.0902 (16) 0.1022 (19) 0.0783 (16) −0.0157 (14) 0.0366 (13) −0.0003 (14)
C20 0.0745 (13) 0.0841 (16) 0.0766 (14) 0.0000 (11) 0.0316 (11) −0.0042 (12)

Geometric parameters (Å, º)

O1—C13 1.348 (2) C14—C15 1.503 (3)
O2—C11 1.359 (2) C15—C20 1.370 (3)
O2—C14 1.412 (2) C15—C16 1.368 (3)
O3—N2 1.221 (3) C16—C17 1.386 (4)
O4—N2 1.216 (3) C17—C18 1.358 (5)
N1—C4 1.410 (2) C18—C19 1.351 (4)
N1—C7 1.284 (2) C19—C20 1.376 (3)
O1—H1 0.8200 C2—H2 0.9300
N2—C1 1.459 (3) C3—H3 0.9300
C1—C2 1.365 (3) C5—H5 0.9300
C1—C6 1.365 (3) C6—H6 0.9300
C2—C3 1.383 (3) C7—H7 1.00 (2)
C3—C4 1.384 (3) C9—H9 0.9300
C4—C5 1.382 (3) C10—H10 0.9300
C5—C6 1.375 (3) C12—H12 0.9300
C7—C8 1.436 (3) C14—H14A 0.9700
C8—C13 1.419 (2) C14—H14B 0.9700
C8—C9 1.388 (3) C16—H16 0.9300
C9—C10 1.381 (3) C17—H17 0.9300
C10—C11 1.394 (2) C18—H18 0.9300
C11—C12 1.382 (3) C19—H19 0.9300
C12—C13 1.375 (2) C20—H20 0.9300
C11—O2—C14 118.78 (15) C17—C18—C19 119.3 (2)
C4—N1—C7 122.55 (16) C18—C19—C20 120.8 (3)
C13—O1—H1 109.00 C15—C20—C19 120.7 (2)
O3—N2—O4 123.1 (2) C1—C2—H2 120.00
O4—N2—C1 118.9 (2) C3—C2—H2 120.00
O3—N2—C1 118.0 (2) C2—C3—H3 120.00
N2—C1—C2 119.38 (19) C4—C3—H3 120.00
C2—C1—C6 121.3 (2) C4—C5—H5 119.00
N2—C1—C6 119.32 (19) C6—C5—H5 119.00
C1—C2—C3 119.26 (19) C1—C6—H6 120.00
C2—C3—C4 120.63 (19) C5—C6—H6 120.00
N1—C4—C3 125.52 (17) N1—C7—H7 121.3 (11)
N1—C4—C5 116.02 (17) C8—C7—H7 117.0 (11)
C3—C4—C5 118.47 (18) C8—C9—H9 119.00
C4—C5—C6 121.0 (2) C10—C9—H9 119.00
C1—C6—C5 119.3 (2) C9—C10—H10 121.00
N1—C7—C8 121.71 (17) C11—C10—H10 121.00
C7—C8—C13 121.79 (16) C11—C12—H12 120.00
C9—C8—C13 117.59 (15) C13—C12—H12 120.00
C7—C8—C9 120.61 (16) O2—C14—H14A 110.00
C8—C9—C10 122.57 (17) O2—C14—H14B 110.00
C9—C10—C11 118.34 (17) C15—C14—H14A 110.00
O2—C11—C10 124.01 (16) C15—C14—H14B 110.00
C10—C11—C12 120.78 (16) H14A—C14—H14B 108.00
O2—C11—C12 115.18 (15) C15—C16—H16 120.00
C11—C12—C13 120.33 (16) C17—C16—H16 120.00
O1—C13—C8 121.03 (15) C16—C17—H17 120.00
O1—C13—C12 118.59 (16) C18—C17—H17 120.00
C8—C13—C12 120.37 (16) C17—C18—H18 120.00
O2—C14—C15 108.86 (17) C19—C18—H18 120.00
C14—C15—C16 119.5 (2) C18—C19—H19 120.00
C16—C15—C20 118.1 (2) C20—C19—H19 120.00
C14—C15—C20 122.3 (2) C15—C20—H20 120.00
C15—C16—C17 120.7 (3) C19—C20—H20 120.00
C16—C17—C18 120.3 (3)
C14—O2—C11—C10 −8.6 (3) C13—C8—C9—C10 0.0 (3)
C14—O2—C11—C12 173.28 (18) C7—C8—C13—O1 0.2 (3)
C11—O2—C14—C15 177.00 (17) C7—C8—C13—C12 −179.20 (17)
C7—N1—C4—C3 5.8 (3) C9—C8—C13—O1 −179.10 (16)
C7—N1—C4—C5 −174.31 (19) C9—C8—C13—C12 1.5 (3)
C4—N1—C7—C8 −179.76 (16) C8—C9—C10—C11 −1.0 (3)
O3—N2—C1—C2 −178.9 (2) C9—C10—C11—O2 −177.44 (17)
O3—N2—C1—C6 2.0 (3) C9—C10—C11—C12 0.6 (3)
O4—N2—C1—C2 2.2 (3) O2—C11—C12—C13 179.08 (16)
O4—N2—C1—C6 −177.0 (2) C10—C11—C12—C13 0.9 (3)
N2—C1—C2—C3 −179.09 (18) C11—C12—C13—O1 178.65 (17)
C6—C1—C2—C3 0.1 (3) C11—C12—C13—C8 −2.0 (3)
N2—C1—C6—C5 178.5 (2) O2—C14—C15—C16 −144.8 (2)
C2—C1—C6—C5 −0.7 (4) O2—C14—C15—C20 37.0 (3)
C1—C2—C3—C4 0.7 (3) C14—C15—C16—C17 −177.7 (2)
C2—C3—C4—N1 179.10 (18) C20—C15—C16—C17 0.5 (4)
C2—C3—C4—C5 −0.8 (3) C14—C15—C20—C19 178.3 (2)
N1—C4—C5—C6 −179.7 (2) C16—C15—C20—C19 0.1 (3)
C3—C4—C5—C6 0.2 (3) C15—C16—C17—C18 −0.5 (4)
C4—C5—C6—C1 0.5 (4) C16—C17—C18—C19 −0.1 (4)
N1—C7—C8—C9 178.26 (17) C17—C18—C19—C20 0.8 (4)
N1—C7—C8—C13 −1.0 (3) C18—C19—C20—C15 −0.7 (4)
C7—C8—C9—C10 −179.31 (17)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C15–C20 ring.

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.87 2.599 (2) 148
C9—H9···O2i 0.93 2.56 3.476 (2) 168
C10—H10···Cg3i 0.93 2.87 3.754 (2) 159

Symmetry code: (i) x, −y+1/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5239).

References

  1. Arora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem. 14, 1611–1615.
  2. Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.
  6. Khandar, A. A., Hosseini-Yazdi, S. A. & Zarei, S. A. (2005). Inorg. Chim. Acta, 358, 3211–3217.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Tarafder, M. T. H., Chew, K., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.
  10. Tzimopoulos, D., Czapik, A., Gdaniec, M., Bakas, T., Isab, A. A., Varvogli, A.-C. & Akrivos, P. D. (2010). J. Mol. Struct. 965, 56–64.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015022173/su5239sup1.cif

e-71-o1000-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022173/su5239Isup2.hkl

e-71-o1000-Isup2.hkl (181.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022173/su5239Isup3.cml

. DOI: 10.1107/S2056989015022173/su5239fig1.tif

View of the mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as a dashed line (see Table 1).

c . DOI: 10.1107/S2056989015022173/su5239fig2.tif

A view along the c axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 1).

CCDC reference: 1437973

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES