Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 6;71(Pt 12):o1008–o1009. doi: 10.1107/S2056989015022136

Crystal structure of a methimazole-based ionic liquid

Jamie C Gaitor a, Manuel Sanchez Zayas a, Darrel J Myrthil a, Frankie White b, Jeffrey M Hendrich b, Richard E Sykora b, Richard A O’Brien b, John T Reilly a, Arsalan Mirjafari a,*
PMCID: PMC4719949  PMID: 26870468

Abstract

The structure of 1-methyl-2-(prop-2-en-1-ylsulfan­yl)-1H-imidazol-3-ium bromide, C7H11N2S+·Br, has monoclinic (P21/c) symmetry. In the crystal, the components are linked by N—H⋯Br and C—H⋯Br hydrogen bonds. The crystal structure of the title compound undeniably proves that methimazole reacts through the thione tautomer, rather than the thiol tautomer in this system.

Keywords: crystal structure, ionic liquids, methimazole, S-allyl­ation, nitro­gen heterocycle

Related literature  

For the biological activity of methimazole, see: Rong et al. (2013). For its use as a ligand, see: Crossley et al. (2006). For a discussion of methimazole-based ionic liquids, see: Siriwardana et al. (2008). For reaction chemistry of methimazole, see: Roy & Mugesh (2005).graphic file with name e-71-o1008-scheme1.jpg

Experimental  

Crystal data  

  • C7H11N2S+·Br

  • M r = 235.15

  • Monoclinic, Inline graphic

  • a = 10.8692 (7) Å

  • b = 7.4103 (5) Å

  • c = 12.8551 (9) Å

  • β = 104.006 (7)°

  • V = 1004.62 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.24 mm−1

  • T = 180 K

  • 0.6 × 0.32 × 0.25 mm

Data collection  

  • Agilent Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) T min = 0.321, T max = 1.000

  • 7388 measured reflections

  • 1829 independent reflections

  • 1558 reflections with I > 2σ(I)

  • R int = 0.042

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.065

  • S = 1.03

  • 1829 reflections

  • 105 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015022136/hg5463sup1.cif

e-71-o1008-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022136/hg5463Isup2.hkl

e-71-o1008-Isup2.hkl (90.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022136/hg5463Isup3.cml

. DOI: 10.1107/S2056989015022136/hg5463fig1.tif

A thermal ellipsoid diagram of the structure of the title compound.

. DOI: 10.1107/S2056989015022136/hg5463fig2.tif

Reaction scheme.

CCDC reference: 1437865

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Br1i 0.84 (3) 2.46 (3) 3.246 (2) 158 (3)
C2—H2A⋯Br1ii 0.93 2.84 3.723 (4) 159
C3—H3⋯Br1iii 0.93 2.91 3.757 (3) 152
C4—H4B⋯Br1 0.96 2.87 3.737 (3) 151
C5—H5B⋯Br1iv 0.97 2.89 3.814 (3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the Alice and Karl Sheffield Scholarship and the Department of Chemistry and Physics of FGCU for funding this project. They also acknowledge the National Science Foundation for their generous support (NSF–CAREER grant to RES, CHE-0846680).

supplementary crystallographic information

S1. Comment

2-Mercapto-1-methyl­imidazole or methimazole 1 belongs to a class of five-membered heterocyclic nitro­gen compounds, which possess various biological activities (e.g. it is a widely used anti-thyroid drug under the name Tapazole), see: Rong et al. (2013). Additionally, it has found use as a multidentate ligand in the fields of inorganic and organometallic chemistry, in which the sulfur atom can serve as a soft donor towards a wide variety of transition metals, see: Crossley et al. (2006). The alkyl­ation of methimazole with alkyl halides (e.g. iodo­ethane and chloro­butane) lead to the formation of methimazole-based ionic liquids in high yields, see Siriwardana et al. (2008). To date, no methimazole-based ionic liquids have been structurally characterized by X-ray diffraction.

Methimazole exists in two tautomeric forms, equilibrating between the 2-thiol 1a and 2-thione 1b, and both N-alkyl­ation and S-alkyl­ation reactions are possible, depending upon the reaction conditions and types of substrates employed, see Roy & Mugesh (2005). They reported that only S-alkyl­ated methimazoles were formed. The product structures were established by NMR spectroscopy, which is elusive in terms of proving the exclusive formation of S-alkyl­ated products over N-alkyl­ated products. Herein, we report the crystal structure of S-allyl­ated methimazolium bromide 2, which was prepared in qu­anti­tative yield (96%) via the reaction of methimazole with allyl bromide in refluxing aceto­nitrile (Scheme S1). The crystal structure of 2 undeniably proves that methimazole reacts through the 2-thione tautomer 1b.

S2. Synthesis and crystallization

2-Mercapto-1-methyl­imidazole (0.57 g, 5 mmol) and allyl bromide (0.85 g, 7 mmol) were dissolved in aceto­nitrile (5.0 mL) and the mixture refluxed for 48 hours. The solvent and excess allyl bromide were removed under vacuum to afford an off-white solid. The solid was washed with toluene (3 x 10 mL) and then recrystallized in aceto­nitrile to yield pure product 2 as an off-white solid in 96% isolated yield.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The H-atom (H2) located on N2 was allowed to freely refine (isotropically). The remaining H-atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å for methyl hydrogens, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.97 Å for the secondary hydrogens, and with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for all remaining hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

A thermal ellipsoid diagram of the structure of the title compound.

Fig. 2.

Fig. 2.

Reaction scheme.

Crystal data

C7H11N2S+·Br F(000) = 472
Mr = 235.15 Dx = 1.555 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.8692 (7) Å Cell parameters from 2203 reflections
b = 7.4103 (5) Å θ = 3.9–27.0°
c = 12.8551 (9) Å µ = 4.24 mm1
β = 104.006 (7)° T = 180 K
V = 1004.62 (11) Å3 Prism, colourless
Z = 4 0.6 × 0.32 × 0.25 mm

Data collection

Agilent Xcalibur, Eos diffractometer 1829 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1558 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.042
Detector resolution: 16.0514 pixels mm-1 θmax = 25.3°, θmin = 3.2°
ω scans h = −13→13
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −8→8
Tmin = 0.321, Tmax = 1.000 l = −15→15
7388 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.027P)2] where P = (Fo2 + 2Fc2)/3
1829 reflections (Δ/σ)max = 0.001
105 parameters Δρmax = 0.34 e Å3
1 restraint Δρmin = −0.38 e Å3

Special details

Experimental. CrysAlis Pro (Agilent, 2014) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.70880 (3) 0.66161 (4) 0.53045 (2) 0.02621 (12)
N2 0.6562 (2) 0.0414 (3) 0.2392 (2) 0.0273 (6)
N1 0.6302 (2) 0.1226 (3) 0.39296 (18) 0.0233 (6)
C2 0.5297 (3) 0.0739 (4) 0.2258 (3) 0.0316 (8)
H2A 0.4669 0.0623 0.1625 0.038*
C3 0.5134 (3) 0.1262 (4) 0.3221 (3) 0.0285 (7)
H3 0.4371 0.1587 0.3376 0.034*
C1 0.7171 (3) 0.0704 (4) 0.3410 (2) 0.0234 (7)
S1 0.87834 (8) 0.04183 (11) 0.39532 (7) 0.0373 (2)
C4 0.6547 (4) 0.1637 (4) 0.5076 (2) 0.0370 (9)
H4A 0.5756 0.1749 0.5278 0.055*
H4B 0.7009 0.2750 0.5221 0.055*
H4C 0.7037 0.0681 0.5481 0.055*
C6 0.9092 (3) 0.3747 (4) 0.3027 (3) 0.0410 (9)
H6 0.9450 0.3274 0.2498 0.049*
C5 0.9322 (3) 0.2790 (4) 0.4066 (3) 0.0405 (9)
H5A 0.8889 0.3429 0.4532 0.049*
H5B 1.0223 0.2818 0.4401 0.049*
C7 0.8417 (3) 0.5215 (5) 0.2809 (3) 0.0436 (9)
H7A 0.8047 0.5719 0.3323 0.052*
H7B 0.8305 0.5758 0.2141 0.052*
H2 0.689 (3) 0.007 (4) 0.190 (2) 0.049 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02573 (18) 0.0284 (2) 0.02529 (19) −0.00350 (13) 0.00772 (13) −0.00185 (13)
N2 0.0309 (15) 0.0295 (16) 0.0227 (15) 0.0016 (12) 0.0088 (13) −0.0005 (12)
N1 0.0304 (15) 0.0165 (13) 0.0238 (14) −0.0003 (11) 0.0081 (12) 0.0002 (10)
C2 0.0256 (17) 0.030 (2) 0.0354 (19) −0.0008 (14) −0.0003 (15) 0.0026 (15)
C3 0.0190 (16) 0.0255 (18) 0.041 (2) 0.0028 (13) 0.0064 (14) 0.0023 (15)
C1 0.0253 (17) 0.0180 (17) 0.0264 (17) −0.0015 (13) 0.0057 (14) 0.0027 (13)
S1 0.0229 (4) 0.0335 (5) 0.0518 (6) 0.0031 (4) 0.0019 (4) 0.0112 (4)
C4 0.059 (2) 0.028 (2) 0.0254 (18) −0.0016 (16) 0.0128 (17) −0.0035 (14)
C6 0.039 (2) 0.045 (2) 0.044 (2) −0.0026 (17) 0.0186 (18) 0.0108 (18)
C5 0.0249 (18) 0.040 (2) 0.051 (2) −0.0105 (15) −0.0023 (16) 0.0134 (17)
C7 0.049 (2) 0.042 (2) 0.037 (2) 0.0000 (18) 0.0056 (18) 0.0126 (17)

Geometric parameters (Å, º)

N2—C2 1.366 (4) C4—H4A 0.9600
N2—C1 1.334 (4) C4—H4B 0.9600
N2—H2 0.836 (17) C4—H4C 0.9600
N1—C3 1.373 (4) C6—H6 0.9300
N1—C1 1.338 (3) C6—C5 1.480 (4)
N1—C4 1.465 (4) C6—C7 1.304 (4)
C2—H2A 0.9300 C5—H5A 0.9700
C2—C3 1.349 (4) C5—H5B 0.9700
C3—H3 0.9300 C7—H7A 0.9300
C1—S1 1.736 (3) C7—H7B 0.9300
S1—C5 1.847 (3)
C2—N2—H2 124 (2) N1—C4—H4B 109.5
C1—N2—C2 109.9 (3) N1—C4—H4C 109.5
C1—N2—H2 126 (2) H4A—C4—H4B 109.5
C3—N1—C4 125.3 (3) H4A—C4—H4C 109.5
C1—N1—C3 109.0 (2) H4B—C4—H4C 109.5
C1—N1—C4 125.7 (3) C5—C6—H6 118.1
N2—C2—H2A 126.7 C7—C6—H6 118.1
C3—C2—N2 106.7 (3) C7—C6—C5 123.8 (3)
C3—C2—H2A 126.7 S1—C5—H5A 108.8
N1—C3—H3 126.3 S1—C5—H5B 108.8
C2—C3—N1 107.3 (3) C6—C5—S1 113.8 (2)
C2—C3—H3 126.3 C6—C5—H5A 108.8
N2—C1—N1 107.1 (3) C6—C5—H5B 108.8
N2—C1—S1 126.0 (2) H5A—C5—H5B 107.7
N1—C1—S1 126.9 (2) C6—C7—H7A 120.0
C1—S1—C5 100.68 (14) C6—C7—H7B 120.0
N1—C4—H4A 109.5 H7A—C7—H7B 120.0
N2—C2—C3—N1 −0.7 (3) C1—N2—C2—C3 0.7 (4)
N2—C1—S1—C5 104.2 (3) C1—N1—C3—C2 0.5 (3)
N1—C1—S1—C5 −77.0 (3) C1—S1—C5—C6 −61.4 (3)
C2—N2—C1—N1 −0.4 (3) C4—N1—C3—C2 −177.7 (3)
C2—N2—C1—S1 178.7 (2) C4—N1—C1—N2 178.1 (3)
C3—N1—C1—N2 −0.1 (3) C4—N1—C1—S1 −0.9 (4)
C3—N1—C1—S1 −179.1 (2) C7—C6—C5—S1 121.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···Br1i 0.84 (3) 2.46 (3) 3.246 (2) 158 (3)
C2—H2A···Br1ii 0.93 2.84 3.723 (4) 159
C3—H3···Br1iii 0.93 2.91 3.757 (3) 152
C4—H4B···Br1 0.96 2.87 3.737 (3) 151
C5—H5B···Br1iv 0.97 2.89 3.814 (3) 161

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5463).

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Crossley, I. R., Hill, A. F., Humphrey, E. R. & Smith, M. K. (2006). Organometallics, 25, 2242–2247.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Rong, Y., Al-Harbi, A., Kriegel, B. & Parkin, G. (2013). Inorg. Chem. 52, 7172–7182. [DOI] [PubMed]
  5. Roy, G. & Mugesh, G. (2005). J. Am. Chem. Soc. 127, 15207–15217. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siriwardana, A. I., Crossley, I. R., Torriero, A. J., Burgar, I. M., Dunlop, N. F., Bond, A. M., Deacon, G. B. & MacFarlane, D. R. (2008). J. Org. Chem. 73, 4676–4679. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015022136/hg5463sup1.cif

e-71-o1008-sup1.cif (18.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022136/hg5463Isup2.hkl

e-71-o1008-Isup2.hkl (90.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022136/hg5463Isup3.cml

. DOI: 10.1107/S2056989015022136/hg5463fig1.tif

A thermal ellipsoid diagram of the structure of the title compound.

. DOI: 10.1107/S2056989015022136/hg5463fig2.tif

Reaction scheme.

CCDC reference: 1437865

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES