Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 6;71(Pt 12):o1012. doi: 10.1107/S2056989015022689

Crystal structure of (Z)-3-allyl-5-(4-chloro­benzyl­idene)-2-sulfanyl­idene-1,3-thia­zolidin-4-one

Rahhal El Ajlaoui a,*, El Mostapha Rakib a, Souad Mojahidi a, Mohamed Saadi b, Lahcen El Ammari b
PMCID: PMC4719951  PMID: 26870470

Abstract

In the title compound, C13H10ClNOS2, the dihedral angle between the rhodanine (r.m.s. deviation = 0.008 Å) and 4-chloro­benzyl­idene rings is 1.79 (11)°. The allyl group attached to the N atom, which lies almost perpendicular to the rhodanine ring, is disordered over two orientations in a 0.519 (13):0.481 (13) ratio. A short intra­molecular C—H⋯S inter­action closes an S(6) ring. In the crystal, mol­ecules are linked by π–π stacking inter­actions [centroid–centroid separation = 3.600 (15) Å], generating inversion dimers.

Keywords: crystal structure; rhodanine-based mol­ecules; pharmacological activity; biological activity; 1,3-thia­zolidin-4-one

Related literature  

For a related structure and background to the pharmacological and biological activities of rhodanine-based mol­ecules, see: El Ajlaoui et al. (2015).graphic file with name e-71-o1012-scheme1.jpg

Experimental  

Crystal data  

  • C13H10ClNOS2

  • M r = 295.79

  • Triclinic, Inline graphic

  • a = 7.6197 (8) Å

  • b = 7.9849 (7) Å

  • c = 13.0624 (14) Å

  • α = 77.600 (5)°

  • β = 77.996 (5)°

  • γ = 61.954 (4)°

  • V = 679.76 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 296 K

  • 0.37 × 0.25 × 0.21 mm

Data collection  

  • Bruker X8 APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.656, T max = 0.746

  • 24189 measured reflections

  • 3249 independent reflections

  • 2199 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.144

  • S = 1.04

  • 3249 reflections

  • 182 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015022689/hb7551sup1.cif

e-71-o1012-sup1.cif (841.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022689/hb7551Isup2.hkl

e-71-o1012-Isup2.hkl (259.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022689/hb7551Isup3.cml

. DOI: 10.1107/S2056989015022689/hb7551fig1.tif

Plot of the mol­ecule of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

. DOI: 10.1107/S2056989015022689/hb7551fig2.tif

Crystal packing for the title compound showing hydrogen bonds as dashed lines between inversion-related mol­ecules.

CCDC reference: 1439050

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S1 0.93 2.55 3.254 (3) 133

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

supplementary crystallographic information

S1. Comment

As part of our ongoing studies of rhodanine derivatives, we now describe the title compound.

The molecule of the title compound is build up from a rhodanine ring (S1–N1–C8–C9–C10) linked to an disordered allyl group (48%/52%) (C11–C12AC12B–C13AC13B) and at the nitrogen atom and to a 4-chlorobenzylidene ring system (C1 to C6) as shown in Fig.1. The mean plane through the rhodanine ring is almost perpendicular to the allyl group and makes a dihedral angle of 1.79 (11)° with the 4-chlorobenzylidene ring system. Nearly the same structure is observed by El Ajlaoui et al. 2015 in (Z)-3-Allyl-5-(4-methyl-benzylidene)-2- thioxothiazolidin-4-one.

The cohesion of the crystal structure is ensured by π—π interaction between molecules forming inversion dimers as shown in Fig.2.

S2. Experimental

To a solution of 3-allylrhodanine (1.15 mmol, 0.2 g) in 10 ml of THF, (4-chlorobenzylidene)-4-methyl-5-oxopyrazolidin-2-ium-1-ide (1.38 mmol) was added. The mixture was refluxed for 8 h, monitored by TLC, the reaction completed and a yellow spot (TLC Rf = 0.3, using hexane/ethyl acetate 1:9) was generated cleanly. The solvent was evaporated in vacuo. The crude product was purified on silica gel using hexane: ethyl acetate (1/9) as eluent. The title compound was recrystallized from ethanol (Yield: 72%, m.p.: 371 K).

S3. Refinement

H atoms were located in a difference map and treated as riding with C–H = 0.97 Å and C–H = 0.93 Å for methylene and aromatic, respectively. All hydrogen with Uiso(H) = 1.2 Ueq for methylene and aromatic. The reflection (0 0 1) affected by the beam-stop is removed during refinement.

Figures

Fig. 1.

Fig. 1.

Plot of the molecule of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

Fig. 2.

Fig. 2.

Crystal packing for the title compound showing hydrogen bonds as dashed lines between inversion-related molecules.

Crystal data

C13H10ClNOS2 F(000) = 304
Mr = 295.79 Dx = 1.445 Mg m3
Triclinic, P1 Melting point: 371 K
a = 7.6197 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.9849 (7) Å Cell parameters from 3249 reflections
c = 13.0624 (14) Å θ = 2.9–27.9°
α = 77.600 (5)° µ = 0.57 mm1
β = 77.996 (5)° T = 296 K
γ = 61.954 (4)° Block, colourless
V = 679.76 (12) Å3 0.37 × 0.25 × 0.21 mm
Z = 2

Data collection

Bruker X8 APEX CCD diffractometer 3249 independent reflections
Radiation source: fine-focus sealed tube 2199 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
φ and ω scans θmax = 27.9°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→9
Tmin = 0.656, Tmax = 0.746 k = −10→10
24189 measured reflections l = −17→17

Refinement

Refinement on F2 3 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2968P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3249 reflections Δρmax = 0.38 e Å3
182 parameters Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 −0.1200 (4) 0.7895 (3) 0.6827 (2) 0.0698 (7)
C2 −0.0835 (4) 0.7296 (4) 0.5860 (2) 0.0709 (7)
H2 −0.1709 0.6939 0.5668 0.085*
C3 0.0823 (4) 0.7228 (3) 0.5181 (2) 0.0652 (6)
H3 0.1060 0.6822 0.4528 0.078*
C4 0.2174 (3) 0.7752 (3) 0.54439 (19) 0.0574 (6)
C5 0.1746 (4) 0.8355 (3) 0.6429 (2) 0.0678 (7)
H5 0.2612 0.8714 0.6627 0.081*
C6 0.0086 (5) 0.8438 (4) 0.7117 (2) 0.0762 (7)
H6 −0.0170 0.8853 0.7769 0.091*
C7 0.3946 (4) 0.7721 (3) 0.4765 (2) 0.0592 (6)
H4 0.4665 0.8149 0.5045 0.071*
C8 0.4733 (4) 0.7186 (3) 0.38062 (19) 0.0584 (6)
C9 0.6604 (4) 0.7264 (3) 0.3269 (2) 0.0634 (6)
C10 0.5892 (4) 0.6044 (4) 0.2013 (2) 0.0712 (7)
C11 0.8918 (5) 0.6605 (5) 0.1606 (3) 0.0912 (9)
H11A 0.9341 0.5757 0.1079 0.109*
H11B 1.0013 0.6194 0.2015 0.109*
C12A 0.8259 (17) 0.8701 (16) 0.1084 (6) 0.100 (3) 0.519 (13)
H12A 0.8190 0.9597 0.1463 0.120* 0.519 (13)
C13A 0.779 (2) 0.925 (2) 0.0099 (6) 0.131 (4) 0.519 (13)
H13A 0.7852 0.8369 −0.0287 0.157* 0.519 (13)
H13B 0.7393 1.0524 −0.0202 0.157* 0.519 (13)
C12B 0.8935 (18) 0.8039 (12) 0.0686 (7) 0.144 (6) 0.481 (13)
H12B 1.0008 0.7686 0.0151 0.172* 0.481 (13)
C13B 0.747 (2) 0.9822 (14) 0.0591 (12) 0.140 (6) 0.481 (13)
H13C 0.6384 1.0200 0.1117 0.168* 0.481 (13)
H13D 0.7530 1.0688 −0.0002 0.168* 0.481 (13)
N1 0.7137 (3) 0.6620 (3) 0.22888 (17) 0.0667 (5)
O1 0.7595 (3) 0.7794 (3) 0.36081 (16) 0.0818 (6)
S1 0.38675 (10) 0.63202 (10) 0.29984 (6) 0.0703 (2)
S2 0.61487 (17) 0.51989 (15) 0.09357 (7) 0.1047 (3)
Cl1 −0.33030 (13) 0.79962 (14) 0.76777 (7) 0.1017 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0656 (15) 0.0542 (13) 0.0814 (17) −0.0180 (11) −0.0213 (13) −0.0017 (12)
C2 0.0635 (15) 0.0670 (15) 0.0856 (18) −0.0260 (12) −0.0248 (14) −0.0091 (13)
C3 0.0675 (15) 0.0583 (13) 0.0731 (15) −0.0225 (12) −0.0262 (12) −0.0119 (11)
C4 0.0618 (13) 0.0388 (10) 0.0715 (14) −0.0163 (9) −0.0270 (11) −0.0041 (10)
C5 0.0759 (17) 0.0565 (13) 0.0795 (17) −0.0280 (12) −0.0257 (14) −0.0138 (12)
C6 0.0841 (19) 0.0632 (15) 0.0758 (17) −0.0217 (14) −0.0203 (15) −0.0153 (13)
C7 0.0652 (14) 0.0444 (11) 0.0755 (15) −0.0228 (10) −0.0310 (12) −0.0052 (10)
C8 0.0647 (14) 0.0441 (11) 0.0727 (15) −0.0224 (10) −0.0320 (12) −0.0019 (10)
C9 0.0704 (15) 0.0502 (12) 0.0743 (16) −0.0265 (11) −0.0300 (12) 0.0017 (11)
C10 0.0826 (17) 0.0618 (14) 0.0712 (16) −0.0280 (13) −0.0312 (14) −0.0024 (12)
C11 0.094 (2) 0.101 (2) 0.082 (2) −0.0513 (19) −0.0114 (17) −0.0002 (17)
C12A 0.118 (7) 0.113 (8) 0.074 (5) −0.068 (7) 0.019 (5) −0.014 (5)
C13A 0.134 (10) 0.109 (9) 0.136 (9) −0.044 (8) −0.018 (8) −0.011 (7)
C12B 0.221 (15) 0.113 (8) 0.077 (7) −0.075 (9) 0.033 (8) −0.022 (6)
C13B 0.147 (9) 0.103 (8) 0.092 (9) −0.008 (7) 0.022 (7) −0.009 (6)
N1 0.0715 (13) 0.0601 (11) 0.0714 (13) −0.0293 (10) −0.0238 (11) −0.0003 (10)
O1 0.0901 (13) 0.0898 (13) 0.0922 (13) −0.0563 (11) −0.0284 (11) −0.0093 (10)
S1 0.0730 (4) 0.0733 (4) 0.0787 (4) −0.0340 (3) −0.0272 (3) −0.0173 (3)
S2 0.1285 (8) 0.1284 (8) 0.0783 (5) −0.0645 (6) −0.0206 (5) −0.0303 (5)
Cl1 0.0793 (5) 0.1100 (7) 0.1008 (6) −0.0346 (5) −0.0040 (4) −0.0102 (5)

Geometric parameters (Å, º)

C1—C2 1.374 (4) C9—N1 1.392 (3)
C1—C6 1.384 (4) C10—N1 1.366 (3)
C1—Cl1 1.728 (3) C10—S2 1.626 (3)
C2—C3 1.370 (4) C10—S1 1.749 (3)
C2—H2 0.9300 C11—N1 1.457 (4)
C3—C4 1.402 (3) C11—C12B 1.4743 (10)
C3—H3 0.9300 C11—C12A 1.543 (11)
C4—C5 1.392 (3) C11—H11A 0.9700
C4—C7 1.445 (4) C11—H11B 0.9700
C5—C6 1.373 (4) C12A—C13A 1.3334 (10)
C5—H5 0.9300 C12A—H12A 0.9300
C6—H6 0.9300 C13A—H13A 0.9300
C7—C8 1.338 (3) C13A—H13B 0.9300
C7—H4 0.9300 C12B—C13B 1.3333 (10)
C8—C9 1.475 (4) C12B—H12B 0.9300
C8—S1 1.749 (2) C13B—H13C 0.9300
C9—O1 1.211 (3) C13B—H13D 0.9300
C2—C1—C6 120.6 (3) N1—C10—S2 127.3 (2)
C2—C1—Cl1 119.4 (2) N1—C10—S1 110.9 (2)
C6—C1—Cl1 119.9 (2) S2—C10—S1 121.89 (17)
C3—C2—C1 119.5 (2) N1—C11—C12B 125.5 (5)
C3—C2—H2 120.2 N1—C11—C12A 104.4 (5)
C1—C2—H2 120.2 N1—C11—H11A 110.9
C2—C3—C4 121.8 (2) C12A—C11—H11A 110.9
C2—C3—H3 119.1 N1—C11—H11B 110.9
C4—C3—H3 119.1 C12A—C11—H11B 110.9
C5—C4—C3 116.8 (2) H11A—C11—H11B 108.9
C5—C4—C7 118.5 (2) C13A—C12A—C11 121.3 (11)
C3—C4—C7 124.7 (2) C13A—C12A—H12A 119.4
C6—C5—C4 122.1 (2) C11—C12A—H12A 119.4
C6—C5—H5 119.0 C12A—C13A—H13A 120.0
C4—C5—H5 119.0 C12A—C13A—H13B 120.0
C5—C6—C1 119.1 (3) H13A—C13A—H13B 120.0
C5—C6—H6 120.4 C13B—C12B—C11 122.4 (11)
C1—C6—H6 120.4 C13B—C12B—H12B 118.8
C8—C7—C4 131.4 (2) C11—C12B—H12B 118.8
C8—C7—H4 114.3 C12B—C13B—H13C 120.0
C4—C7—H4 114.3 C12B—C13B—H13D 120.0
C7—C8—C9 121.4 (2) H13C—C13B—H13D 120.0
C7—C8—S1 129.3 (2) C10—N1—C9 116.3 (2)
C9—C8—S1 109.29 (18) C10—N1—C11 123.1 (3)
O1—C9—N1 122.6 (3) C9—N1—C11 120.6 (2)
O1—C9—C8 126.4 (3) C8—S1—C10 92.62 (12)
N1—C9—C8 110.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···S1 0.93 2.55 3.254 (3) 133

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7551).

References

  1. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. El Ajlaoui, R., Rakib, E. M., Chigr, M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o906–o907. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015022689/hb7551sup1.cif

e-71-o1012-sup1.cif (841.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022689/hb7551Isup2.hkl

e-71-o1012-Isup2.hkl (259.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022689/hb7551Isup3.cml

. DOI: 10.1107/S2056989015022689/hb7551fig1.tif

Plot of the mol­ecule of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.

. DOI: 10.1107/S2056989015022689/hb7551fig2.tif

Crystal packing for the title compound showing hydrogen bonds as dashed lines between inversion-related mol­ecules.

CCDC reference: 1439050

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES