Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 6;71(Pt 12):o1021. doi: 10.1107/S2056989015022707

Crystal structure of 4-(4-meth­oxy­phen­oxy)benzaldehyde

Andreas Schäfer a, Ljuba Iovkova-Berends a, Stefan Gilke a, Paul Kossmann a, Hans Preut a,*, Martin Hiersemann a
PMCID: PMC4719957  PMID: 26870476

Abstract

The title compound, C14H12O3, was synthesized via the nucleophilic addition of 4-meth­oxy­phenol to 4-fluoro­benzaldehyde. The dihedral angle between the least-squares planes of the benzene rings is 71.52 (3)° and the C—O—C angle at the central O atom is 118.82 (8)°. In the crystal, weak C—H⋯O hydrogen bonds link the molecules to generate supra­molecular layers in the bc plane. The layers are linked by weak C—H⋯π inter­actions.

Keywords: crystal structure, nucleophilic aromatic substitution, benzaldehyde

Related literature  

For the synthesis of 4-(4-meth­oxy­phen­oxy)benzaldehyde in an undergraduate laboratory course, see: Taber & Brannick (2015). For the synthesis of 4-aryl­oxybenzaldehydes and aceto­phenones, see: Yeager & Schissel (1991).graphic file with name e-71-o1021-scheme1.jpg

Experimental  

Crystal data  

  • C14H12O3

  • M r = 228.24

  • Monoclinic, Inline graphic

  • a = 12.1297 (7) Å

  • b = 7.6581 (4) Å

  • c = 12.3577 (7) Å

  • β = 103.769 (6)°

  • V = 1114.92 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.56 × 0.40 × 0.30 mm

Data collection  

  • Oxford Diffraction Xcalibur2 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.808, T max = 1.000

  • 10049 measured reflections

  • 2967 independent reflections

  • 2551 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.112

  • S = 1.04

  • 2967 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXP2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, 3352b. DOI: 10.1107/S2056989015022707/tk5411sup1.cif

e-71-o1021-sup1.cif (329.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022707/tk5411Isup2.hkl

e-71-o1021-Isup2.hkl (237.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022707/tk5411Isup3.cml

. DOI: 10.1107/S2056989015022707/tk5411fig1.tif

The mol­ecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level.

CCDC reference: 1439095

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1i 0.95 2.58 3.5129 (14) 167
C7—H7A⋯O1ii 0.95 2.56 3.2500 (14) 130
C1—H1ACg1iii 0.95 2.73 3.5453 (12) 145
C10—H10ACg2iv 0.95 2.88 3.7465 (12) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The TU Dortmund is greatefully acknowledged for financial support.

supplementary crystallographic information

S1. Comment

As part of an evaluation of single step experiments for an undergraduate laboratory course, we came across a literature protocol that describes the preparation of crystalline 4-aryloxybenzaldehyde by nucleophilic aromatic substitution (Taber & Brannick, 2015). The reaction of 4-fluorobenzaldehyde (II) with 4-methoxyphenol (III) in the presence of potassium carbonate in dimethyl sulfoxide provided 4-(4-methoxyphenoxy)benzaldehyde (I) as large pale yellow crystals. The recrystallization of a small amount of (I) from n-heptane provided clear colourless crystals, suitable for X-ray analysis. In our hands, the literature protocol failed to deliver precipitated crude product upon dilution of the reaction mixture with water and subsequent drying on filter paper. Our modified protocol is characterized by a general aqueous work-up procedure, including extraction with brine for removal of dimethyl sulfoxide.

S2. Experimental

In a glass test tube (160x16 mm) 4-fluorobenzaldehyde (II) (C7H5FO, M =124.11 g/mol, 250 mg, 2.01 mmol, 1 eq), 4-methoxyphenol (III) (C7H8O2, M = 124.14 g/mol, 250 mg, 2.01 mmol, 1 eq) and potassium carbonate (K2CO3, M = 138.20 g/mol, 550 mg, 3.98 mmol, 2 eq) were suspended in dimethyl sulfoxide (2 ml, 1 ml/mmol). The reaction mixture was heated to 413 K and stirred at this temperature for 45 min. After consumption of the starting materials, the oil bath was removed and the suspension was cooled to room temperature. The reaction mixture was diluted with water (6 ml, 3 ml/mmol) and stirred at ambient temperature for 30 min. The resulting suspension was tranferred into a separatory funnel with water and then extracted with ethyl acetate (3x). The combined organic phases were extracted with saturated aqueous sodium chloride solution (5x) and dried over MgSO4. After removal of the solvents under reduced pressure, the light brown viscous oil was dissolved in dichloromethane (2 ml) and transferred into a wide-necked flask. The solution was diluted with n-heptane (1 ml) and the solvent was allowed to evaporate over three days. Crystals slowly form and grow, coating the sides of the flask. The large pale yellow crystals were washed with n-heptane (1 ml) and dried in vacuo to deliver 4-(4-methoxyphenoxy)benzaldehyde (I) (C14H12O3, M = 228.25 g/mol, 440 mg, 1.93 mmol, 96%). Recrystallization of a small amount of (I) from n-heptane by slow evaporation over one week provided clear colourless crystals. Rf 0.48 (cyclohexane/ethyl acetate 5/1); m.p. 323–325 K (n-heptane) [m.p. 332.5–333.5 K (n-hexane) (Yeager & Schissel, 1991)]; 1H NMR (CDCl3, 500 MHz) δ 3.83 (s, 3H), 6.92–6.95 (m, 2H), 6.99–7.05 (m, 4H), 7.81–7.83 (m, 2H), 9.90 (s, 1H); 13C NMR (CDCl3, 126 MHz) δ 55.8 (CH3), 115.3 (CH), 116.9 (CH), 122.0 (CH), 131.0 (C), 132.1 (CH), 148.3 (C), 157.0 (C), 164.2 (C), 190.9 (CH); IR ν 3005 (w), 2965 (w), 2835 (w), 2745 (w), 1680 (s), 1595 (m), 1575 (s), 1495 (s), 1440 (m), 1230 (s), 1195 (s), 1150 (s), 1100 (m), 1085 (s), 875 (m), 845 (m), 830 (s), 785 (s), 745 (m), 565 (m), 525 (m), 510 (s).

S3. Refinement

H-atoms attached to C, except those in CH3, were placed in calculated positions (C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C)). CH3 hydrogen atoms, which were taken from a Fourier map, were allowed to rotate but not to tip (C—H = 0.98 Å and Uiso(H) = 1.5 Ueq(C)).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level.

Crystal data

C14H12O3 Dx = 1.360 Mg m3
Mr = 228.24 Melting point = 323–325 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.1297 (7) Å Cell parameters from 10396 reflections
b = 7.6581 (4) Å θ = 3.2–31.0°
c = 12.3577 (7) Å µ = 0.10 mm1
β = 103.769 (6)° T = 173 K
V = 1114.92 (11) Å3 Block, colourless
Z = 4 0.56 × 0.40 × 0.30 mm
F(000) = 480

Data collection

Oxford Diffraction Xcalibur2 CCD diffractometer 2967 independent reflections
Radiation source: fine-focus sealed tube 2551 reflections with I > 2σ(I)
Detector resolution: 16.0560 pixels mm-1 Rint = 0.023
ω und ψ scan θmax = 29.0°, θmin = 3.2°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) h = −16→16
Tmin = 0.808, Tmax = 1.000 k = −10→10
10049 measured reflections l = −16→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.2707P] where P = (Fo2 + 2Fc2)/3
2967 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.04659 (7) 0.20198 (13) 0.46684 (7) 0.0345 (2)
C1 1.03112 (9) 0.22947 (15) 0.36759 (9) 0.0254 (2)
H1A 1.0880 0.2933 0.3435 0.030*
O2 0.65559 (6) 0.00429 (11) 0.03836 (6) 0.02476 (19)
C2 0.93213 (9) 0.17254 (14) 0.28176 (8) 0.0207 (2)
O3 0.60491 (7) 0.07872 (11) −0.41611 (6) 0.02479 (19)
C3 0.84285 (9) 0.07946 (14) 0.30868 (8) 0.0207 (2)
H3A 0.8453 0.0524 0.3842 0.025*
C4 0.75139 (9) 0.02708 (14) 0.22570 (8) 0.0204 (2)
H4A 0.6902 −0.0343 0.2440 0.025*
C5 0.74924 (8) 0.06494 (13) 0.11433 (8) 0.0191 (2)
C6 0.83733 (9) 0.15660 (14) 0.08603 (8) 0.0225 (2)
H6A 0.8354 0.1817 0.0103 0.027*
C7 0.92811 (9) 0.21065 (14) 0.17041 (9) 0.0233 (2)
H7A 0.9884 0.2745 0.1522 0.028*
C8 0.65010 (9) 0.02527 (14) −0.07551 (8) 0.0210 (2)
C9 0.56903 (9) 0.13878 (14) −0.13564 (9) 0.0221 (2)
H9A 0.5228 0.2056 −0.0990 0.026*
C10 0.55637 (9) 0.15361 (14) −0.24972 (9) 0.0221 (2)
H10A 0.5012 0.2310 −0.2916 0.027*
C11 0.62441 (8) 0.05530 (13) −0.30341 (8) 0.0198 (2)
C12 0.70607 (9) −0.05710 (14) −0.24197 (9) 0.0228 (2)
H12A 0.7531 −0.1232 −0.2781 0.027*
C13 0.71864 (9) −0.07229 (14) −0.12726 (9) 0.0239 (2)
H13A 0.7739 −0.1491 −0.0849 0.029*
C14 0.66492 (10) −0.03182 (16) −0.47516 (9) 0.0280 (2)
H14A 0.7466 −0.0111 −0.4488 0.042*
H14B 0.6412 −0.0062 −0.5550 0.042*
H14C 0.6482 −0.1542 −0.4622 0.042*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0325 (4) 0.0469 (5) 0.0221 (4) −0.0060 (4) 0.0023 (3) −0.0031 (4)
C1 0.0219 (5) 0.0302 (6) 0.0241 (5) −0.0030 (4) 0.0057 (4) −0.0041 (4)
O2 0.0225 (4) 0.0336 (4) 0.0178 (4) −0.0075 (3) 0.0041 (3) 0.0004 (3)
C2 0.0216 (5) 0.0215 (5) 0.0194 (5) 0.0002 (4) 0.0058 (4) −0.0017 (4)
O3 0.0275 (4) 0.0287 (4) 0.0177 (4) 0.0030 (3) 0.0047 (3) −0.0011 (3)
C3 0.0238 (5) 0.0228 (5) 0.0168 (4) 0.0009 (4) 0.0073 (4) 0.0002 (4)
C4 0.0205 (5) 0.0217 (5) 0.0211 (5) −0.0012 (4) 0.0088 (4) 0.0007 (4)
C5 0.0194 (5) 0.0192 (5) 0.0187 (5) 0.0004 (3) 0.0042 (4) −0.0005 (4)
C6 0.0256 (5) 0.0241 (5) 0.0185 (5) −0.0027 (4) 0.0067 (4) 0.0034 (4)
C7 0.0236 (5) 0.0254 (5) 0.0222 (5) −0.0046 (4) 0.0079 (4) 0.0013 (4)
C8 0.0209 (5) 0.0241 (5) 0.0175 (4) −0.0053 (4) 0.0037 (4) −0.0010 (4)
C9 0.0195 (5) 0.0233 (5) 0.0238 (5) −0.0010 (4) 0.0061 (4) −0.0044 (4)
C10 0.0192 (5) 0.0229 (5) 0.0227 (5) 0.0013 (4) 0.0020 (4) −0.0011 (4)
C11 0.0205 (5) 0.0203 (5) 0.0183 (4) −0.0035 (4) 0.0040 (4) −0.0016 (4)
C12 0.0228 (5) 0.0234 (5) 0.0233 (5) 0.0023 (4) 0.0074 (4) −0.0010 (4)
C13 0.0224 (5) 0.0249 (5) 0.0235 (5) 0.0023 (4) 0.0036 (4) 0.0033 (4)
C14 0.0323 (6) 0.0309 (6) 0.0232 (5) 0.0002 (5) 0.0115 (4) −0.0027 (4)

Geometric parameters (Å, º)

O1—C1 1.2142 (14) C6—H6A 0.9500
C1—C2 1.4664 (14) C7—H7A 0.9500
C1—H1A 0.9500 C8—C13 1.3826 (15)
O2—C5 1.3711 (12) C8—C9 1.3881 (15)
O2—C8 1.4021 (12) C9—C10 1.3861 (14)
C2—C7 1.3962 (14) C9—H9A 0.9500
C2—C3 1.4010 (14) C10—C11 1.3959 (14)
O3—C11 1.3678 (12) C10—H10A 0.9500
O3—C14 1.4254 (13) C11—C12 1.3931 (14)
C3—C4 1.3791 (14) C12—C13 1.3940 (14)
C3—H3A 0.9500 C12—H12A 0.9500
C4—C5 1.4006 (13) C13—H13A 0.9500
C4—H4A 0.9500 C14—H14A 0.9800
C5—C6 1.3909 (14) C14—H14B 0.9800
C6—C7 1.3873 (14) C14—H14C 0.9800
O1—C1—C2 125.60 (10) C13—C8—O2 120.81 (9)
O1—C1—H1A 117.2 C9—C8—O2 117.86 (9)
C2—C1—H1A 117.2 C10—C9—C8 119.25 (10)
C5—O2—C8 118.82 (8) C10—C9—H9A 120.4
C7—C2—C3 119.52 (9) C8—C9—H9A 120.4
C7—C2—C1 118.77 (10) C9—C10—C11 120.29 (9)
C3—C2—C1 121.71 (9) C9—C10—H10A 119.9
C11—O3—C14 117.25 (8) C11—C10—H10A 119.9
C4—C3—C2 120.13 (9) O3—C11—C12 124.34 (9)
C4—C3—H3A 119.9 O3—C11—C10 115.76 (9)
C2—C3—H3A 119.9 C12—C11—C10 119.89 (9)
C3—C4—C5 119.60 (9) C11—C12—C13 119.82 (10)
C3—C4—H4A 120.2 C11—C12—H12A 120.1
C5—C4—H4A 120.2 C13—C12—H12A 120.1
O2—C5—C6 124.03 (9) C8—C13—C12 119.54 (9)
O2—C5—C4 114.91 (9) C8—C13—H13A 120.2
C6—C5—C4 121.05 (9) C12—C13—H13A 120.2
C7—C6—C5 118.78 (9) O3—C14—H14A 109.5
C7—C6—H6A 120.6 O3—C14—H14B 109.5
C5—C6—H6A 120.6 H14A—C14—H14B 109.5
C6—C7—C2 120.91 (10) O3—C14—H14C 109.5
C6—C7—H7A 119.5 H14A—C14—H14C 109.5
C2—C7—H7A 119.5 H14B—C14—H14C 109.5
C13—C8—C9 121.21 (9)
O1—C1—C2—C7 −178.37 (11) C5—O2—C8—C13 71.52 (13)
O1—C1—C2—C3 0.79 (18) C5—O2—C8—C9 −112.38 (11)
C7—C2—C3—C4 −0.45 (16) C13—C8—C9—C10 0.34 (15)
C1—C2—C3—C4 −179.60 (10) O2—C8—C9—C10 −175.74 (9)
C2—C3—C4—C5 1.06 (16) C8—C9—C10—C11 0.04 (15)
C8—O2—C5—C6 4.13 (15) C14—O3—C11—C12 6.25 (15)
C8—O2—C5—C4 −175.51 (9) C14—O3—C11—C10 −174.01 (9)
C3—C4—C5—O2 178.84 (9) C9—C10—C11—O3 179.69 (9)
C3—C4—C5—C6 −0.82 (16) C9—C10—C11—C12 −0.56 (15)
O2—C5—C6—C7 −179.68 (10) O3—C11—C12—C13 −179.58 (9)
C4—C5—C6—C7 −0.06 (16) C10—C11—C12—C13 0.69 (15)
C5—C6—C7—C2 0.69 (16) C9—C8—C13—C12 −0.21 (16)
C3—C2—C7—C6 −0.44 (16) O2—C8—C13—C12 175.76 (9)
C1—C2—C7—C6 178.74 (10) C11—C12—C13—C8 −0.31 (16)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C2–C7 and C8–C13 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C13—H13A···O1i 0.95 2.58 3.5129 (14) 167
C7—H7A···O1ii 0.95 2.56 3.2500 (14) 130
C1—H1A···Cg1iii 0.95 2.73 3.5453 (12) 145
C10—H10A···Cg2iv 0.95 2.88 3.7465 (12) 152

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2; (iii) −x+2, y+1/2, −z+1/2; (iv) −x+1, y+1/2, −z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5411).

References

  1. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Yarnton, England.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  4. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  5. Taber, D. F. & Brannick, S. J. (2015). J. Chem. Educ. 92, 1261–1262.
  6. Yeager, G. W. & Schissel, D. N. (1991). Synthesis, pp. 63–68.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, 3352b. DOI: 10.1107/S2056989015022707/tk5411sup1.cif

e-71-o1021-sup1.cif (329.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022707/tk5411Isup2.hkl

e-71-o1021-Isup2.hkl (237.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022707/tk5411Isup3.cml

. DOI: 10.1107/S2056989015022707/tk5411fig1.tif

The mol­ecular structure of the title compound, showing the labelling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level.

CCDC reference: 1439095

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES