Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 9;71(Pt 12):o1029–o1030. doi: 10.1107/S2056989015023075

Crystal structure of (E)-diethyl 2-[(1-phenyl­sulfonyl-1H-indol-3-yl)methyl­idene]succinate

M Umadevi a,b, Potharaju Raju c, R Yamuna d,*, Arasambattu K Mohanakrishnan c, G Chakkaravarthi e,*
PMCID: PMC4719962  PMID: 26870481

Abstract

In the title compound, C23H23NO6S, the phenyl ring is perpendicular [dihedral angle = 89.34 (9)°] to the indole ring system. In the mol­ecule, the eth­oxy groups are each disordered over two sets of sites with occupancy ratios of 0.671 (6):0.329 (6) and 0.75 (3):0.25 (3). The mol­ecular conformation is consolidated by a weak C—H⋯O interaction, which generates an S(6) graph–set motif. The packing of the mol­ecules in the crystal structure features weak C—H⋯π inter­actions.

Keywords: crystal structure, indole derivative, hydrogen bonding

Related literature  

For the biological activity of indole derivatives, see: Andreani et al. (2001); Kolocouris et al. (1994). For the structures of closely related compounds, see: Chakkaravarthi et al. (2007, 2008).graphic file with name e-71-o1029-scheme1.jpg

Experimental  

Crystal data  

  • C23H23NO6S

  • M r = 441.48

  • Monoclinic, Inline graphic

  • a = 8.3458 (8) Å

  • b = 24.657 (2) Å

  • c = 10.9448 (9) Å

  • β = 91.121 (3)°

  • V = 2251.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 295 K

  • 0.30 × 0.24 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.947, T max = 0.965

  • 31225 measured reflections

  • 4631 independent reflections

  • 2889 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.139

  • S = 1.03

  • 4631 reflections

  • 322 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015023075/rk2433sup1.cif

e-71-o1029-sup1.cif (34.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023075/rk2433Isup2.hkl

e-71-o1029-Isup2.hkl (222.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023075/rk2433Isup3.cml

. DOI: 10.1107/S2056989015023075/rk2433fig1.tif

The mol­ecular structure of title compound, with atom labels. Displacement ellipsoids are drawn at 30% probability level. The H atoms are presented as a small spheres of arbitrary radius. The minor components of the disordered ethyl groups are omitted for clarity.

CCDC reference: 1439879

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.93 2.44 3.012 (4) 120
C12—H12⋯Cg2i 0.93 2.80 3.561 (4) 140

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge the SAIF, IIT, Madras, for the data collection.

supplementary crystallographic information

S1. Structural commentary

Indole derivatives exhibit anti­tumour (Andreani et al., 2001) and anti­viral (Kolocouris et al., 1994) activities. The molecular structure of the title compound is illustrated in (Fig. 1). The geometric parameters of the title molecule agree well with the reported similar structures (Chakkaravarthi et al. 2007, 2008).

The phenyl ring (C1–C6) is perpendicular [dihedral angle of 89.34 (9)°] to indole ring (N1/C7–C14) system in the molecule. In the terminal site, the eth­oxy group is disordered over two positions with site occupancies of 0.671 (6) for major component (O4/C19/C20) and 0.329 (6) for minor component (O4A/C19A/C20A). The other eth­oxy group is also disordered over two positions with site occupancies of 0.75 (3) for major component (O6/C23/C24) and 0.25 (3) for minor component (O6A/C23A/C24A). The torsion angles O1—S1—N1—C14 and O2—S1—N1—C7 [39.9 (2)° and −32.8 (2)°, respectively] indicate the syn–conformation of the sulfonyl moiety. The molecular structure is stabilized by weak non–classical C—H···O hydrogen bond which generates S(6) graph–set (Table 1 & Fig. 1) motif. The crystal structure is influenced by weak C—H···π (Table 1) inter­actions in a three–dimensional network.

S2. Synthesis and crystallization

To a solution of 1–(phenyl­sulfonyl)–1H–indole–3–carboxaldehyde (0.5 g, 1.84 mmol) and phospho­rous ylide (C26H27O4P) (0.96 g, 2.21 mmol) [prepared from (carbeth­oxy­methyl­ene)tri­phenyl­phospho­rane and ethyl bromo­acetate] in dry toluene (10 ml) was refluxed for 24 h. Then the solvent was removed under reduced pressure. The solid obtained was recrystallized from methanol (3 ml) to afford the title compound as a colourless crystal suitable for X–Ray diffraction analysis.

S3. Refinement

The H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H.

The reflections [1 2 2], [0 2 0] and [0 1 1] were omitted during refinement which were owing poor agreement. The bond distances (C19—C20), (C19A—C20A), (C22—C23) and (C22A—C23A) were restraint to 1.54 (1) Å. The anisotropic displacement parameters of terminal site disordered atoms were equalized for the major and minor components with EADP instruction for C20 & C20A and C19 & C19A. The anisotropic displacement parameters in the direction of S1 and O2 were restraint within 0.001 using DELU instruction in SHELXL refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, with atom labels. Displacement ellipsoids are drawn at 30% probability level. The H atoms are presented as a small spheres of arbitrary radius. The minor components of the disordered ethyl groups are omitted for clarity.

Crystal data

C23H23NO6S F(000) = 928
Mr = 441.48 Dx = 1.302 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6504 reflections
a = 8.3458 (8) Å θ = 2.5–23.4°
b = 24.657 (2) Å µ = 0.18 mm1
c = 10.9448 (9) Å T = 295 K
β = 91.121 (3)° Block, colourless
V = 2251.8 (3) Å3 0.30 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 4631 independent reflections
Radiation source: fine–focus sealed tube 2889 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
ω and φ scan θmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.947, Tmax = 0.965 k = −30→30
31225 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.8923P] where P = (Fo2 + 2Fc2)/3
4631 reflections (Δ/σ)max < 0.001
322 parameters Δρmax = 0.31 e Å3
5 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.6466 (3) 0.30006 (9) 0.3924 (2) 0.0459 (6)
C2 0.6500 (3) 0.26226 (10) 0.2988 (2) 0.0567 (7)
H2 0.7465 0.2522 0.2641 0.068*
C3 0.5073 (4) 0.23988 (12) 0.2582 (3) 0.0763 (9)
H3 0.5069 0.2145 0.1953 0.092*
C4 0.3674 (5) 0.25465 (15) 0.3095 (4) 0.0955 (12)
H4 0.2717 0.2396 0.2808 0.115*
C5 0.3651 (4) 0.29161 (15) 0.4035 (4) 0.0997 (13)
H5 0.2686 0.3007 0.4393 0.120*
C6 0.5061 (4) 0.31516 (11) 0.4447 (3) 0.0715 (8)
H6 0.5056 0.3408 0.5069 0.086*
C7 0.7896 (3) 0.43043 (9) 0.3542 (2) 0.0478 (6)
H7 0.7400 0.4439 0.4232 0.057*
C8 0.8039 (3) 0.45752 (9) 0.2475 (2) 0.0454 (6)
C9 0.8822 (3) 0.42149 (9) 0.1642 (2) 0.0485 (6)
C10 0.9268 (4) 0.42694 (12) 0.0431 (3) 0.0663 (8)
H10 0.9071 0.4590 0.0006 0.080*
C11 1.0001 (4) 0.38407 (14) −0.0123 (3) 0.0844 (10)
H11 1.0287 0.3869 −0.0937 0.101*
C12 1.0325 (4) 0.33661 (13) 0.0507 (3) 0.0806 (10)
H12 1.0828 0.3082 0.0107 0.097*
C13 0.9924 (3) 0.33027 (11) 0.1709 (3) 0.0662 (8)
H13 1.0155 0.2985 0.2134 0.079*
C14 0.9159 (3) 0.37344 (9) 0.2258 (2) 0.0485 (6)
C15 0.7460 (3) 0.51183 (9) 0.2172 (2) 0.0505 (6)
H15 0.7002 0.5161 0.1396 0.061*
C16 0.7508 (3) 0.55562 (9) 0.2867 (2) 0.0477 (6)
C17 0.8300 (3) 0.55776 (10) 0.4103 (2) 0.0528 (7)
H17A 0.9083 0.5288 0.4167 0.063*
H17B 0.8869 0.5919 0.4188 0.063*
C18 0.7145 (4) 0.55251 (11) 0.5119 (3) 0.0588 (7)
O4 0.7948 (8) 0.5510 (3) 0.6172 (6) 0.104 (2) 0.671 (6)
C19 0.6975 (11) 0.5455 (4) 0.7255 (6) 0.152 (3) 0.671 (6)
H19A 0.5860 0.5536 0.7065 0.182* 0.671 (6)
H19B 0.7350 0.5698 0.7897 0.182* 0.671 (6)
C20 0.7170 (10) 0.4872 (4) 0.7640 (6) 0.152 (3) 0.671 (6)
H20A 0.6600 0.4642 0.7073 0.228* 0.671 (6)
H20B 0.6750 0.4824 0.8443 0.228* 0.671 (6)
H20C 0.8287 0.4778 0.7649 0.228* 0.671 (6)
O4A 0.7807 (15) 0.5214 (4) 0.6047 (10) 0.066 (2) 0.329 (6)
C19A 0.677 (3) 0.5038 (8) 0.7017 (13) 0.152 (3) 0.329 (6)
H19C 0.7058 0.4669 0.7233 0.182* 0.329 (6)
H19D 0.5678 0.5030 0.6694 0.182* 0.329 (6)
C20A 0.678 (2) 0.5367 (8) 0.8154 (11) 0.152 (3) 0.329 (6)
H20D 0.7847 0.5369 0.8506 0.228* 0.329 (6)
H20E 0.6055 0.5212 0.8725 0.228* 0.329 (6)
H20F 0.6463 0.5731 0.7965 0.228* 0.329 (6)
C21 0.6780 (4) 0.60772 (11) 0.2456 (3) 0.0597 (7)
O6 0.605 (2) 0.6030 (5) 0.1389 (16) 0.076 (3) 0.75 (3)
C22 0.501 (2) 0.6514 (6) 0.1022 (11) 0.111 (4) 0.75 (3)
H22A 0.3980 0.6502 0.1414 0.133* 0.75 (3)
H22B 0.5540 0.6854 0.1226 0.133* 0.75 (3)
C23 0.4834 (17) 0.6446 (6) −0.0316 (10) 0.129 (5) 0.75 (3)
H23A 0.5874 0.6412 −0.0668 0.193* 0.75 (3)
H23B 0.4293 0.6755 −0.0659 0.193* 0.75 (3)
H23C 0.4220 0.6125 −0.0490 0.193* 0.75 (3)
O6A 0.569 (7) 0.6022 (18) 0.153 (5) 0.096 (12) 0.25 (3)
C22A 0.567 (3) 0.6554 (16) 0.084 (4) 0.077 (7) 0.25 (3)
H22C 0.6598 0.6596 0.0334 0.093* 0.25 (3)
H22D 0.5576 0.6863 0.1384 0.093* 0.25 (3)
C23A 0.415 (4) 0.6461 (18) 0.009 (5) 0.138 (15) 0.25 (3)
H23D 0.4365 0.6217 −0.0570 0.207* 0.25 (3)
H23E 0.3773 0.6801 −0.0238 0.207* 0.25 (3)
H23F 0.3339 0.6308 0.0597 0.207* 0.25 (3)
N1 0.8600 (2) 0.37943 (7) 0.34558 (19) 0.0484 (5)
O1 0.9526 (2) 0.29189 (7) 0.42972 (19) 0.0672 (6)
O2 0.8019 (2) 0.35559 (7) 0.55794 (16) 0.0678 (5)
O3 0.5734 (3) 0.55723 (9) 0.5029 (2) 0.0778 (6)
O5 0.6935 (3) 0.64938 (7) 0.2993 (2) 0.0852 (7)
S1 0.82591 (8) 0.32957 (2) 0.44398 (6) 0.0503 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0451 (14) 0.0345 (12) 0.0580 (15) 0.0042 (11) −0.0034 (12) 0.0042 (11)
C2 0.0622 (18) 0.0516 (15) 0.0561 (16) −0.0040 (13) −0.0039 (13) 0.0003 (12)
C3 0.083 (2) 0.0685 (19) 0.077 (2) −0.0151 (18) −0.0250 (18) −0.0036 (16)
C4 0.062 (2) 0.073 (2) 0.151 (4) −0.0129 (18) −0.035 (2) 0.005 (2)
C5 0.049 (2) 0.079 (2) 0.171 (4) 0.0067 (18) 0.009 (2) −0.003 (3)
C6 0.0562 (19) 0.0530 (16) 0.105 (2) 0.0061 (14) 0.0061 (17) −0.0103 (16)
C7 0.0529 (15) 0.0371 (12) 0.0533 (15) 0.0003 (11) 0.0010 (12) −0.0034 (11)
C8 0.0440 (14) 0.0376 (12) 0.0546 (15) −0.0014 (11) 0.0003 (11) −0.0006 (11)
C9 0.0478 (15) 0.0429 (13) 0.0549 (15) −0.0076 (11) 0.0051 (12) −0.0045 (11)
C10 0.078 (2) 0.0557 (16) 0.0657 (19) −0.0134 (15) 0.0154 (16) −0.0019 (14)
C11 0.100 (3) 0.079 (2) 0.076 (2) −0.016 (2) 0.0355 (19) −0.0140 (18)
C12 0.086 (2) 0.064 (2) 0.093 (3) −0.0013 (17) 0.036 (2) −0.0192 (18)
C13 0.0634 (19) 0.0469 (15) 0.089 (2) 0.0050 (14) 0.0201 (16) −0.0047 (14)
C14 0.0420 (14) 0.0398 (13) 0.0640 (17) −0.0027 (11) 0.0070 (12) −0.0047 (11)
C15 0.0556 (16) 0.0413 (13) 0.0543 (15) −0.0008 (11) −0.0018 (12) 0.0085 (11)
C16 0.0479 (14) 0.0352 (12) 0.0601 (16) −0.0023 (11) 0.0053 (12) 0.0058 (11)
C17 0.0507 (15) 0.0410 (13) 0.0667 (17) −0.0065 (11) −0.0003 (13) −0.0009 (11)
C18 0.0604 (19) 0.0555 (16) 0.0604 (18) −0.0053 (14) 0.0010 (15) −0.0051 (13)
O4 0.077 (3) 0.180 (7) 0.056 (3) −0.019 (4) −0.006 (2) −0.001 (4)
C19 0.125 (4) 0.269 (9) 0.063 (3) −0.051 (6) 0.014 (3) 0.008 (4)
C20 0.125 (4) 0.269 (9) 0.063 (3) −0.051 (6) 0.014 (3) 0.008 (4)
O4A 0.068 (5) 0.082 (6) 0.048 (4) −0.018 (5) −0.002 (3) −0.003 (4)
C19A 0.125 (4) 0.269 (9) 0.063 (3) −0.051 (6) 0.014 (3) 0.008 (4)
C20A 0.125 (4) 0.269 (9) 0.063 (3) −0.051 (6) 0.014 (3) 0.008 (4)
C21 0.0659 (19) 0.0443 (15) 0.0691 (19) 0.0003 (13) 0.0066 (16) 0.0096 (14)
O6 0.086 (5) 0.047 (4) 0.094 (5) 0.010 (4) −0.018 (3) 0.017 (4)
C22 0.118 (10) 0.065 (4) 0.148 (9) 0.027 (8) −0.043 (8) 0.031 (5)
C23 0.097 (7) 0.127 (7) 0.160 (9) −0.017 (7) −0.056 (7) 0.073 (7)
O6A 0.11 (3) 0.078 (18) 0.095 (17) 0.055 (14) −0.047 (17) −0.023 (13)
C22A 0.054 (11) 0.060 (12) 0.119 (15) 0.028 (11) 0.013 (12) 0.021 (9)
C23A 0.071 (17) 0.107 (18) 0.23 (4) 0.021 (18) −0.03 (2) 0.02 (2)
N1 0.0516 (12) 0.0369 (10) 0.0567 (13) 0.0023 (9) 0.0038 (10) 0.0013 (9)
O1 0.0516 (11) 0.0501 (10) 0.0993 (15) 0.0089 (9) −0.0161 (10) 0.0131 (10)
O2 0.0949 (15) 0.0554 (11) 0.0524 (9) −0.0092 (10) −0.0127 (10) −0.0002 (8)
O3 0.0607 (14) 0.0908 (15) 0.0824 (15) 0.0018 (12) 0.0100 (11) −0.0054 (11)
O5 0.125 (2) 0.0359 (10) 0.0949 (16) 0.0041 (11) 0.0001 (14) −0.0016 (10)
S1 0.0524 (4) 0.0392 (3) 0.0587 (4) −0.0003 (3) −0.0119 (3) 0.0059 (3)

Geometric parameters (Å, º)

C1—C6 1.366 (4) C18—O4 1.323 (7)
C1—C2 1.386 (3) C18—O4A 1.380 (12)
C1—S1 1.748 (2) O4—C19 1.456 (10)
C2—C3 1.379 (4) C19—C20 1.507 (8)
C2—H2 0.9300 C19—H19A 0.9700
C3—C4 1.355 (5) C19—H19B 0.9700
C3—H3 0.9300 C20—H20A 0.9600
C4—C5 1.375 (5) C20—H20B 0.9600
C4—H4 0.9300 C20—H20C 0.9600
C5—C6 1.380 (4) O4A—C19A 1.45 (2)
C5—H5 0.9300 C19A—C20A 1.485 (10)
C6—H6 0.9300 C19A—H19C 0.9700
C7—C8 1.352 (3) C19A—H19D 0.9700
C7—N1 1.392 (3) C20A—H20D 0.9600
C7—H7 0.9300 C20A—H20E 0.9600
C8—C9 1.439 (3) C20A—H20F 0.9600
C8—C15 1.460 (3) C21—O5 1.189 (3)
C9—C14 1.389 (3) C21—O6 1.313 (17)
C9—C10 1.391 (4) C21—O6A 1.36 (5)
C10—C11 1.369 (4) O6—C22 1.52 (2)
C10—H10 0.9300 C22—C23 1.479 (8)
C11—C12 1.382 (5) C22—H22A 0.9700
C11—H11 0.9300 C22—H22B 0.9700
C12—C13 1.372 (4) C23—H23A 0.9600
C12—H12 0.9300 C23—H23B 0.9600
C13—C14 1.385 (3) C23—H23C 0.9600
C13—H13 0.9300 O6A—C22A 1.51 (6)
C14—N1 1.408 (3) C22A—C23A 1.516 (10)
C15—C16 1.321 (3) C22A—H22C 0.9700
C15—H15 0.9300 C22A—H22D 0.9700
C16—C21 1.487 (3) C23A—H23D 0.9600
C16—C17 1.494 (3) C23A—H23E 0.9600
C17—C18 1.492 (4) C23A—H23F 0.9600
C17—H17A 0.9700 N1—S1 1.663 (2)
C17—H17B 0.9700 O1—S1 1.4185 (18)
C18—O3 1.185 (3) O2—S1 1.4202 (19)
C6—C1—C2 121.6 (3) O4—C18—C17 109.2 (4)
C6—C1—S1 119.2 (2) O4A—C18—C17 110.0 (6)
C2—C1—S1 119.2 (2) C18—O4—C19 115.5 (6)
C3—C2—C1 118.5 (3) O4—C19—C20 104.9 (7)
C3—C2—H2 120.8 O4—C19—H19A 110.8
C1—C2—H2 120.8 C20—C19—H19A 110.8
C4—C3—C2 120.3 (3) O4—C19—H19B 110.8
C4—C3—H3 119.8 C20—C19—H19B 110.8
C2—C3—H3 119.8 H19A—C19—H19B 108.8
C3—C4—C5 120.9 (3) C18—O4A—C19A 117.9 (13)
C3—C4—H4 119.5 O4A—C19A—C20A 117.0 (14)
C5—C4—H4 119.5 O4A—C19A—H19C 108.1
C4—C5—C6 119.9 (3) C20A—C19A—H19C 108.1
C4—C5—H5 120.1 O4A—C19A—H19D 108.1
C6—C5—H5 120.1 C20A—C19A—H19D 108.1
C1—C6—C5 118.8 (3) H19C—C19A—H19D 107.3
C1—C6—H6 120.6 C19A—C20A—H20D 109.5
C5—C6—H6 120.6 C19A—C20A—H20E 109.5
C8—C7—N1 110.1 (2) H20D—C20A—H20E 109.5
C8—C7—H7 125.0 C19A—C20A—H20F 109.5
N1—C7—H7 125.0 H20D—C20A—H20F 109.5
C7—C8—C9 106.9 (2) H20E—C20A—H20F 109.5
C7—C8—C15 128.0 (2) O5—C21—O6 124.1 (7)
C9—C8—C15 125.1 (2) O5—C21—O6A 121 (2)
C14—C9—C10 119.3 (2) O5—C21—C16 123.9 (3)
C14—C9—C8 108.0 (2) O6—C21—C16 111.9 (7)
C10—C9—C8 132.7 (2) O6A—C21—C16 114 (2)
C11—C10—C9 118.5 (3) C21—O6—C22 114.6 (13)
C11—C10—H10 120.7 C23—C22—O6 102.5 (13)
C9—C10—H10 120.7 C23—C22—H22A 111.2
C10—C11—C12 121.2 (3) O6—C22—H22A 111.3
C10—C11—H11 119.4 C23—C22—H22B 111.2
C12—C11—H11 119.4 O6—C22—H22B 111.3
C13—C12—C11 121.7 (3) H22A—C22—H22B 109.2
C13—C12—H12 119.2 C21—O6A—C22A 107 (3)
C11—C12—H12 119.2 O6A—C22A—C23A 98 (4)
C12—C13—C14 116.9 (3) O6A—C22A—H22C 112.3
C12—C13—H13 121.6 C23A—C22A—H22C 112.1
C14—C13—H13 121.6 O6A—C22A—H22D 111.9
C13—C14—C9 122.4 (3) C23A—C22A—H22D 112.2
C13—C14—N1 130.5 (2) H22C—C22A—H22D 109.8
C9—C14—N1 107.1 (2) C22A—C23A—H23D 109.5
C16—C15—C8 127.8 (2) C22A—C23A—H23E 109.5
C16—C15—H15 116.1 H23D—C23A—H23E 109.5
C8—C15—H15 116.1 C22A—C23A—H23F 109.5
C15—C16—C21 121.6 (2) H23D—C23A—H23F 109.5
C15—C16—C17 123.9 (2) H23E—C23A—H23F 109.5
C21—C16—C17 114.5 (2) C7—N1—C14 107.80 (19)
C18—C17—C16 113.0 (2) C7—N1—S1 123.13 (18)
C18—C17—H17A 109.0 C14—N1—S1 126.13 (16)
C16—C17—H17A 109.0 O1—S1—O2 120.72 (12)
C18—C17—H17B 109.0 O1—S1—N1 106.02 (11)
C16—C17—H17B 109.0 O2—S1—N1 105.29 (10)
H17A—C17—H17B 107.8 O1—S1—C1 109.09 (11)
O3—C18—O4 124.1 (4) O2—S1—C1 109.70 (13)
O3—C18—O4A 119.9 (6) N1—S1—C1 104.75 (11)
O3—C18—C17 125.8 (3)
C6—C1—C2—C3 0.2 (4) C18—O4—C19—C20 104.0 (8)
S1—C1—C2—C3 −179.2 (2) O3—C18—O4A—C19A −11.3 (11)
C1—C2—C3—C4 −0.2 (4) O4—C18—O4A—C19A 96.2 (17)
C2—C3—C4—C5 −0.7 (5) C17—C18—O4A—C19A −169.3 (9)
C3—C4—C5—C6 1.6 (6) C18—O4A—C19A—C20A −97.2 (18)
C2—C1—C6—C5 0.6 (4) C15—C16—C21—O5 −172.0 (3)
S1—C1—C6—C5 −179.9 (3) C17—C16—C21—O5 7.1 (4)
C4—C5—C6—C1 −1.5 (5) C15—C16—C21—O6 3.4 (9)
N1—C7—C8—C9 2.2 (3) C17—C16—C21—O6 −177.5 (8)
N1—C7—C8—C15 179.5 (2) C15—C16—C21—O6A 19 (3)
C7—C8—C9—C14 −1.2 (3) C17—C16—C21—O6A −162 (3)
C15—C8—C9—C14 −178.7 (2) O5—C21—O6—C22 −15.6 (18)
C7—C8—C9—C10 179.4 (3) O6A—C21—O6—C22 68 (10)
C15—C8—C9—C10 1.9 (4) C16—C21—O6—C22 169.0 (11)
C14—C9—C10—C11 1.2 (4) C21—O6—C22—C23 160.5 (12)
C8—C9—C10—C11 −179.5 (3) O5—C21—O6A—C22A 37 (5)
C9—C10—C11—C12 −1.2 (5) O6—C21—O6A—C22A −68 (9)
C10—C11—C12—C13 0.2 (5) C16—C21—O6A—C22A −154 (3)
C11—C12—C13—C14 0.8 (5) C21—O6A—C22A—C23A −167 (3)
C12—C13—C14—C9 −0.8 (4) C8—C7—N1—C14 −2.3 (3)
C12—C13—C14—N1 179.9 (3) C8—C7—N1—S1 −163.95 (17)
C10—C9—C14—C13 −0.1 (4) C13—C14—N1—C7 −179.1 (3)
C8—C9—C14—C13 −179.6 (2) C9—C14—N1—C7 1.5 (3)
C10—C9—C14—N1 179.3 (2) C13—C14—N1—S1 −18.2 (4)
C8—C9—C14—N1 −0.2 (3) C9—C14—N1—S1 162.42 (17)
C7—C8—C15—C16 41.3 (4) C7—N1—S1—O1 −161.85 (19)
C9—C8—C15—C16 −141.8 (3) C14—N1—S1—O1 39.9 (2)
C8—C15—C16—C21 −176.4 (2) C7—N1—S1—O2 −32.8 (2)
C8—C15—C16—C17 4.6 (4) C14—N1—S1—O2 169.0 (2)
C15—C16—C17—C18 −99.6 (3) C7—N1—S1—C1 82.8 (2)
C21—C16—C17—C18 81.3 (3) C14—N1—S1—C1 −75.4 (2)
C16—C17—C18—O3 −15.0 (4) C6—C1—S1—O1 149.7 (2)
C16—C17—C18—O4 175.7 (4) C2—C1—S1—O1 −30.8 (2)
C16—C17—C18—O4A 141.5 (4) C6—C1—S1—O2 15.5 (2)
O3—C18—O4—C19 10.8 (9) C2—C1—S1—O2 −165.07 (19)
O4A—C18—O4—C19 −82.3 (14) C6—C1—S1—N1 −97.1 (2)
C17—C18—O4—C19 −179.6 (6) C2—C1—S1—N1 82.3 (2)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C13—H13···O1 0.93 2.44 3.012 (4) 120
C12—H12···Cg2i 0.93 2.80 3.561 (4) 140

Symmetry code: (i) x−1/2, −y−1/2, z−3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RK2433).

References

  1. Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. & Garaliene, V. (2001). Anticancer Drug. Des. 16, 167–174. [PubMed]
  2. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542. [DOI] [PMC free article] [PubMed]
  4. Chakkaravarthi, G., Ramesh, N., Mohanakrishnan, A. K. & Manivannan, V. (2007). Acta Cryst. E63, o3564.
  5. Kolocouris, N., Foscolos, G. B., Kolocouris, A., Marakos, P., Pouli, N., Fytas, G., Ikeda, S. & De Clercq, E. (1994). J. Med. Chem. 37, 2896–2902. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015023075/rk2433sup1.cif

e-71-o1029-sup1.cif (34.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023075/rk2433Isup2.hkl

e-71-o1029-Isup2.hkl (222.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023075/rk2433Isup3.cml

. DOI: 10.1107/S2056989015023075/rk2433fig1.tif

The mol­ecular structure of title compound, with atom labels. Displacement ellipsoids are drawn at 30% probability level. The H atoms are presented as a small spheres of arbitrary radius. The minor components of the disordered ethyl groups are omitted for clarity.

CCDC reference: 1439879

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES