Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 12;71(Pt 12):o1041–o1042. doi: 10.1107/S2056989015023403

Crystal structure of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide

Daniel Canseco-González a, Juventino J García a,*, Marcos Flores-Alamo a
PMCID: PMC4719969  PMID: 26870488

Abstract

In the cation of the title salt, C18H20N3 +·I, the mesityl and phenyl rings are inclined to the central triazolium ring by 61.39 (16) and 30.99 (16)°, respectively, and to one another by 37.75 (15)°. In the crystal, mol­ecules are linked via C—H⋯I hydrogen bonds, forming slabs parallel to the ab plane. Within the slabs there are weak π–π inter­actions present involving the mesityl and phenyl rings [inter-centroid distances are 3.8663 (18) and 3.8141 (18) Å].

Keywords: crystal structure, triazolium salt, mesityl group, C—H⋯I hydrogen bonds

Related literature  

For classical Arduengo-type imidazol-2-yl­idene N-heterocyclic carbenes (NHCs), see: Arduengo et al. (1995); Mathew et al. (2008). For similar 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium structures and some complexes, see: Saravanakumar et al. (2011); Hohloch et al. (2011, 2013); Shaik et al. (2013).graphic file with name e-71-o1041-scheme1.jpg

Experimental  

Crystal data  

  • C18H20N3 +·I

  • M r = 405.27

  • Monoclinic, Inline graphic

  • a = 7.6704 (3) Å

  • b = 9.9341 (3) Å

  • c = 22.8541 (10) Å

  • β = 98.982 (4)°

  • V = 1720.09 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.86 mm−1

  • T = 130 K

  • 0.14 × 0.08 × 0.02 mm

Data collection  

  • Agilent Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical (CrysAlis RED; Agilent, 2013) T min = 0.864, T max = 0.963

  • 8948 measured reflections

  • 4073 independent reflections

  • 3374 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.084

  • S = 1.16

  • 4073 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: (CrysAlis PRO; Agilent, 2013); cell refinement: (CrysAlis RED; Agilent, 2013); data reduction: (CrysAlis RED; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015023403/su5254sup1.cif

e-71-o1041-sup1.cif (324.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023403/su5254Isup2.hkl

e-71-o1041-Isup2.hkl (324.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023403/su5254Isup3.cml

. DOI: 10.1107/S2056989015023403/su5254fig1.tif

The mol­ecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015023403/su5254fig2.tif

A view along the a axis of the crystal packing of the title compound. The C—H⋯I hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these inter­actions have been omitted for clarity.

CCDC reference: 1440705

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯I1i 0.95 3.12 4.049 (3) 168
C12—H12A⋯I1ii 0.98 3.20 3.916 (3) 131
C12—H12B⋯I1 0.98 3.22 4.172 (3) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

DCG would like to thank DGAPA–UNAM for a postdoctoral fellowship. The authors thank Dr Alma Arévalo for her technical assistance. This work was supported financially by CONACYT (178265) and DGAPA-PAPIIT-IN-210613, which is gratefully acknowledged

supplementary crystallographic information

S1. Commentary

Mesoionic 1,2,3-triazol-5-ylidenes bear only one nitro­gen adjacent to the carbene bonding site and are more basic than the classical Arduengo-type imidazol-2-yl­idene NHCs (Arduengo et al., 1995; Mathew et al., 2008). This type of triazolyl­idene has recently been applied for the development of a variety of organometallic complexes, specially directed towards catalytic purposes (Saravanakumar et al., 2011; Hohloch et al., 2011,2013); Shaik et al., 2013).

In the cation of the title salt, Fig. 1, the central triazolium ring (N1—N3/C10/C11) is inclined to the mesityl (C1—C6) and phenyl (C13—C18) rings by 61.39 (16) and 30.99 (16) °, respectively, while the two six-membered aromatic rings are inclined to one another by 37.75 (15) °.

In the crystal, molecules are linked via C—H···I hydrogen bonds forming slabs parallel to the ab plane (Table 1 and Fig. 2). Within the slabs there are slipped parallel π-π inter­actions present involving the mesityl and phenyl rings: Cg2···Cg3i = 3.8663 (18) Å [where Cg2 and Cg3 are the centroids of rings C1—C6 and C13—C18, inter­planar distance = 3.6798 (13) Å, slippage = 1.595 Å; symmetry ocde: (i) − x + 3/2, y + 1/2, − z + 1/3], and Cg2···Cg3ii = 3.8141 (18) Å [inter­planar distance = 3.5739 (13) Å, slippage = 1.797 Å; symmetry ocde: (ii) − x + 5/2, y + 1/2, −z + 1/2]; see Fig. 2.

S2. Synthesis and crystallization

Synthesis of 1-mesityl-4-phenyl-1,2,3-triazole

2-azido-1,3,5-tri­methyl­benzene (868 mg, 5.4 mmol), and phenyl­acetyl­ene (1000 mg, 4.9 mmol) were suspended in a mixture of water (16.0 ml) and tBuOH (16.0 ml). To the previous mixture CuSO4 (10.6 mg, 0.05 mmol), and sodium ascorbate (97 mg, 0.50 mmol) were added and stirred for 24 h at 100 °C. The reaction mixture was allowed to cool and tBuOH was evaporated off. The resulted mixture was extracted with CH2Cl2 (2 × 100 ml). The combined organic phases were washed with water (2 × 60 ml), brine (2 × 50 ml), dried over MgSO4 and evaporated to dryness. The residue was washed with pentane (50 ml) to afford the crude triazole as an off brown solid. The crude product was recrystallized from hot acetone to give the corresponding pure triazole (yield: 1100 mg, 85%). 1H NMR (CDCl3, 300 MHz): δ 7.93 (d, 3JHH = 7.8 Hz, 2H, Har), 7.84 (s, 1H, Htrz), 7.47 (t, 3JHH = 7.8 Hz, 2H, Har), 7.36 (t, 3JHH = 7.5 Hz, 1H, Har), 7.01 (s, 2H, Hmes), 2.37 (s, 3H, ArCH3), 2.02 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 147.5 (Ctrz–Mes), 140.0, 135.1, 133.5, 130.4, 129.1 (5 × Car), 128.9 (Ctrz-H), 130.4, 128.8, 128.2 (3 × Car), 21.1 (Ar—CH3), 17.3 (Ar—CH3).

Synthesis of 1-mesityl-3-methyl-4-phenyl-1H-1,2,3-triazol-3-ium iodide

A solution of 1-mesityl-4-phenyl-1,2,3-triazole (500 mg, 1.3 mmol) in MeCN (12 ml) was added CH3I (1.7 g, 12 mmol) and the mixture was stirred at 373 K for 48 h. The workup and purification were carried out according to the general method. The title compound was obtained as a white solid (yield: 612 mg, 80%). Colourless plate-like crystals were obtained by ???? - please complete.1H NMR (CDCl3, 300 MHz): δ 8.86 (s, 1H, Htrz), 8.04 (m, 2H, Har), 7.58 (m, 3H, Har), 7.05 (s, 2H, Hmes), 4.58 (s, 3H, NCH3), 2.37 (s, 3H, ArCH3), 2.22 (s, 6H, ArCH3). 13C{1H} NMR (CDCl3, 75 MHz): δ 144.2 (Ctrz–Mes), 142.5, 134.4, 132.2, 130.4, 130.1, 129.9, 129.7, 121.2, (8 × Car), 40.7 (NCH3), 21.2 (Ar—CH3), 18.5 (Ar—CH3). Anal. Calcd. for C18H20IN3 x 1 H2O (423.28): C 51.44, H 5.24, N 9.93. Found: C 51.44, H 4.34, N 10.17.

S3. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were placed in geometrically idealized positions and refined as riding on their parent atoms: C—H = 0.95–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view along the a axis of the crystal packing of the title compound. The C—H···I hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these interactions have been omitted for clarity.

Crystal data

C18H20N3+·I F(000) = 808
Mr = 405.27 Dx = 1.565 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3748 reflections
a = 7.6704 (3) Å θ = 4.5–29.3°
b = 9.9341 (3) Å µ = 1.86 mm1
c = 22.8541 (10) Å T = 130 K
β = 98.982 (4)° Plate, colourless
V = 1720.09 (12) Å3 0.14 × 0.08 × 0.02 mm
Z = 4

Data collection

Agilent Xcalibur Atlas Gemini diffractometer 4073 independent reflections
Graphite monochromator 3374 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1 Rint = 0.031
ω scans θmax = 29.3°, θmin = 3.4°
Absorption correction: analytical (CrysAlis RED; Agilent, 2013) h = −10→9
Tmin = 0.864, Tmax = 0.963 k = −13→12
8948 measured reflections l = −20→30

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.4334P] where P = (Fo2 + 2Fc2)/3
S = 1.16 (Δ/σ)max = 0.001
4073 reflections Δρmax = 1.05 e Å3
203 parameters Δρmin = −0.57 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9473 (4) 0.6044 (3) 0.32285 (13) 0.0166 (6)
C2 1.0174 (4) 0.7345 (3) 0.32716 (13) 0.0166 (6)
C3 1.0440 (4) 0.7926 (3) 0.38314 (14) 0.0193 (7)
H3 1.0952 0.8798 0.3878 0.023*
C4 0.9986 (4) 0.7281 (3) 0.43240 (14) 0.0207 (7)
C5 0.9244 (4) 0.6001 (3) 0.42536 (14) 0.0205 (7)
H5 0.8905 0.5562 0.4587 0.025*
C6 0.8984 (4) 0.5345 (3) 0.37081 (13) 0.0178 (6)
C7 0.8235 (4) 0.3951 (3) 0.36552 (14) 0.0217 (7)
H7A 0.7477 0.3814 0.3958 0.033*
H7B 0.92 0.3293 0.3712 0.033*
H7C 0.7538 0.3832 0.3261 0.033*
C8 1.0311 (6) 0.7949 (4) 0.49185 (16) 0.0336 (9)
H8A 1.1237 0.7462 0.5179 0.05*
H8B 0.9222 0.7943 0.5093 0.05*
H8C 1.0687 0.8881 0.4873 0.05*
C9 1.0623 (4) 0.8130 (3) 0.27524 (15) 0.0224 (7)
H9A 1.1435 0.8862 0.2896 0.034*
H9B 0.9541 0.8507 0.2527 0.034*
H9C 1.1186 0.7533 0.2496 0.034*
C10 1.0035 (4) 0.4227 (3) 0.25127 (13) 0.0174 (6)
H10 1.0827 0.3672 0.2768 0.021*
C11 0.9446 (4) 0.4023 (3) 0.19207 (13) 0.0165 (6)
C12 0.7388 (4) 0.5467 (3) 0.11771 (13) 0.0193 (7)
H12A 0.8138 0.6043 0.0973 0.029*
H12B 0.6313 0.5958 0.1228 0.029*
H12C 0.707 0.4654 0.0942 0.029*
C13 0.9856 (4) 0.2918 (3) 0.15337 (14) 0.0185 (7)
C14 0.9941 (4) 0.3091 (3) 0.09329 (15) 0.0224 (7)
H14 0.9724 0.3951 0.0755 0.027*
C15 1.0344 (5) 0.2003 (3) 0.05942 (16) 0.0262 (8)
H15 1.0361 0.2112 0.0182 0.031*
C16 1.0722 (4) 0.0760 (3) 0.08598 (16) 0.0265 (8)
H16 1.1002 0.0018 0.0629 0.032*
C17 1.0694 (4) 0.0596 (3) 0.14553 (16) 0.0240 (7)
H17 1.0984 −0.0253 0.1635 0.029*
C18 1.0248 (4) 0.1657 (3) 0.17954 (15) 0.0207 (7)
H18 1.0207 0.153 0.2205 0.025*
I1 0.22531 (3) 0.67415 (2) 0.12660 (2) 0.02384 (9)
N1 0.8211 (3) 0.5913 (3) 0.22025 (11) 0.0174 (5)
N2 0.9259 (3) 0.5380 (2) 0.26597 (10) 0.0152 (5)
N3 0.8348 (3) 0.5089 (2) 0.17589 (11) 0.0157 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0163 (14) 0.0163 (15) 0.0157 (15) 0.0032 (13) −0.0023 (11) −0.0023 (13)
C2 0.0134 (14) 0.0184 (16) 0.0174 (15) 0.0047 (13) 0.0006 (11) 0.0015 (13)
C3 0.0193 (15) 0.0152 (15) 0.0223 (17) 0.0029 (13) −0.0003 (12) −0.0031 (13)
C4 0.0226 (16) 0.0223 (17) 0.0165 (16) 0.0075 (14) 0.0002 (12) −0.0011 (14)
C5 0.0250 (16) 0.0217 (17) 0.0149 (15) 0.0047 (14) 0.0029 (12) 0.0048 (13)
C6 0.0167 (14) 0.0170 (15) 0.0189 (15) 0.0040 (13) 0.0005 (12) 0.0016 (13)
C7 0.0251 (16) 0.0163 (16) 0.0234 (17) 0.0000 (14) 0.0025 (13) 0.0055 (13)
C8 0.052 (2) 0.028 (2) 0.0201 (18) 0.0025 (18) 0.0015 (16) −0.0050 (15)
C9 0.0242 (16) 0.0210 (17) 0.0214 (17) −0.0020 (14) 0.0016 (13) 0.0014 (14)
C10 0.0198 (15) 0.0141 (15) 0.0177 (15) 0.0032 (13) 0.0010 (12) 0.0000 (12)
C11 0.0160 (14) 0.0130 (15) 0.0199 (16) −0.0001 (12) 0.0014 (12) −0.0003 (12)
C12 0.0232 (16) 0.0157 (16) 0.0163 (16) 0.0019 (13) −0.0050 (12) 0.0008 (12)
C13 0.0156 (14) 0.0148 (15) 0.0242 (17) 0.0005 (13) 0.0006 (12) −0.0021 (13)
C14 0.0246 (16) 0.0193 (17) 0.0225 (17) 0.0000 (14) 0.0013 (13) −0.0035 (14)
C15 0.0267 (17) 0.0276 (19) 0.0244 (18) −0.0022 (15) 0.0040 (14) −0.0094 (15)
C16 0.0250 (17) 0.0199 (17) 0.035 (2) −0.0024 (15) 0.0062 (14) −0.0147 (15)
C17 0.0214 (16) 0.0141 (16) 0.036 (2) 0.0023 (14) 0.0021 (14) −0.0059 (14)
C18 0.0194 (15) 0.0165 (16) 0.0255 (17) −0.0009 (13) 0.0015 (13) −0.0007 (14)
I1 0.02450 (13) 0.01763 (12) 0.03061 (14) −0.00299 (9) 0.00815 (9) −0.00440 (9)
N1 0.0191 (13) 0.0143 (13) 0.0179 (13) 0.0005 (11) 0.0004 (10) −0.0018 (11)
N2 0.0171 (12) 0.0128 (12) 0.0143 (12) 0.0020 (11) −0.0018 (10) −0.0006 (10)
N3 0.0188 (12) 0.0112 (12) 0.0158 (12) −0.0005 (11) −0.0009 (10) 0.0000 (10)

Geometric parameters (Å, º)

C1—C6 1.397 (4) C10—C11 1.373 (4)
C1—C2 1.397 (4) C10—H10 0.95
C1—N2 1.444 (4) C11—N3 1.367 (4)
C2—C3 1.389 (4) C11—C13 1.475 (4)
C2—C9 1.504 (4) C12—N3 1.465 (4)
C3—C4 1.386 (5) C12—H12A 0.98
C3—H3 0.95 C12—H12B 0.98
C4—C5 1.392 (5) C12—H12C 0.98
C4—C8 1.498 (5) C13—C14 1.395 (5)
C5—C6 1.393 (4) C13—C18 1.400 (4)
C5—H5 0.95 C14—C15 1.392 (5)
C6—C7 1.497 (4) C14—H14 0.95
C7—H7A 0.98 C15—C16 1.386 (5)
C7—H7B 0.98 C15—H15 0.95
C7—H7C 0.98 C16—C17 1.374 (5)
C8—H8A 0.98 C16—H16 0.95
C8—H8B 0.98 C17—C18 1.384 (4)
C8—H8C 0.98 C17—H17 0.95
C9—H9A 0.98 C18—H18 0.95
C9—H9B 0.98 N1—N3 1.320 (3)
C9—H9C 0.98 N1—N2 1.325 (3)
C10—N2 1.358 (4)
C6—C1—C2 123.5 (3) N2—C10—H10 126.9
C6—C1—N2 118.2 (3) C11—C10—H10 126.9
C2—C1—N2 118.3 (3) N3—C11—C10 104.3 (3)
C3—C2—C1 116.7 (3) N3—C11—C13 126.5 (3)
C3—C2—C9 119.5 (3) C10—C11—C13 129.2 (3)
C1—C2—C9 123.9 (3) N3—C12—H12A 109.5
C4—C3—C2 122.4 (3) N3—C12—H12B 109.5
C4—C3—H3 118.8 H12A—C12—H12B 109.5
C2—C3—H3 118.8 N3—C12—H12C 109.5
C3—C4—C5 118.6 (3) H12A—C12—H12C 109.5
C3—C4—C8 120.3 (3) H12B—C12—H12C 109.5
C5—C4—C8 121.1 (3) C14—C13—C18 119.4 (3)
C4—C5—C6 122.0 (3) C14—C13—C11 123.1 (3)
C4—C5—H5 119 C18—C13—C11 117.5 (3)
C6—C5—H5 119 C15—C14—C13 120.0 (3)
C5—C6—C1 116.8 (3) C15—C14—H14 120
C5—C6—C7 120.3 (3) C13—C14—H14 120
C1—C6—C7 122.9 (3) C16—C15—C14 119.8 (3)
C6—C7—H7A 109.5 C16—C15—H15 120.1
C6—C7—H7B 109.5 C14—C15—H15 120.1
H7A—C7—H7B 109.5 C17—C16—C15 120.3 (3)
C6—C7—H7C 109.5 C17—C16—H16 119.8
H7A—C7—H7C 109.5 C15—C16—H16 119.8
H7B—C7—H7C 109.5 C16—C17—C18 120.6 (3)
C4—C8—H8A 109.5 C16—C17—H17 119.7
C4—C8—H8B 109.5 C18—C17—H17 119.7
H8A—C8—H8B 109.5 C17—C18—C13 119.8 (3)
C4—C8—H8C 109.5 C17—C18—H18 120.1
H8A—C8—H8C 109.5 C13—C18—H18 120.1
H8B—C8—H8C 109.5 N3—N1—N2 104.3 (2)
C2—C9—H9A 109.5 N1—N2—C10 112.2 (2)
C2—C9—H9B 109.5 N1—N2—C1 119.8 (2)
H9A—C9—H9B 109.5 C10—N2—C1 128.0 (2)
C2—C9—H9C 109.5 N1—N3—C11 113.1 (2)
H9A—C9—H9C 109.5 N1—N3—C12 116.7 (2)
H9B—C9—H9C 109.5 C11—N3—C12 130.2 (3)
N2—C10—C11 106.2 (3)
C6—C1—C2—C3 2.3 (4) C18—C13—C14—C15 2.5 (5)
N2—C1—C2—C3 −177.0 (3) C11—C13—C14—C15 179.7 (3)
C6—C1—C2—C9 −177.0 (3) C13—C14—C15—C16 −2.3 (5)
N2—C1—C2—C9 3.8 (4) C14—C15—C16—C17 0.2 (5)
C1—C2—C3—C4 −2.1 (4) C15—C16—C17—C18 1.6 (5)
C9—C2—C3—C4 177.2 (3) C16—C17—C18—C13 −1.3 (5)
C2—C3—C4—C5 0.3 (5) C14—C13—C18—C17 −0.7 (5)
C2—C3—C4—C8 179.6 (3) C11—C13—C18—C17 −178.0 (3)
C3—C4—C5—C6 1.4 (5) N3—N1—N2—C10 −0.7 (3)
C8—C4—C5—C6 −177.9 (3) N3—N1—N2—C1 178.6 (2)
C4—C5—C6—C1 −1.2 (4) C11—C10—N2—N1 0.5 (4)
C4—C5—C6—C7 178.0 (3) C11—C10—N2—C1 −178.8 (3)
C2—C1—C6—C5 −0.7 (4) C6—C1—N2—N1 119.6 (3)
N2—C1—C6—C5 178.6 (3) C2—C1—N2—N1 −61.0 (4)
C2—C1—C6—C7 −180.0 (3) C6—C1—N2—C10 −61.2 (4)
N2—C1—C6—C7 −0.7 (4) C2—C1—N2—C10 118.1 (3)
N2—C10—C11—N3 0.0 (3) N2—N1—N3—C11 0.7 (3)
N2—C10—C11—C13 −179.4 (3) N2—N1—N3—C12 −176.8 (2)
N3—C11—C13—C14 33.1 (5) C10—C11—N3—N1 −0.5 (3)
C10—C11—C13—C14 −147.6 (3) C13—C11—N3—N1 179.0 (3)
N3—C11—C13—C18 −149.6 (3) C10—C11—N3—C12 176.7 (3)
C10—C11—C13—C18 29.7 (5) C13—C11—N3—C12 −3.9 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10···I1i 0.95 3.12 4.049 (3) 168
C12—H12A···I1ii 0.98 3.20 3.916 (3) 131
C12—H12B···I1 0.98 3.22 4.172 (3) 163

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5254).

References

  1. Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Hohloch, S., Scheiffele, D. & Sarkar, B. (2013). Eur. J. Inorg. Chem. pp. 3956–3965.
  5. Hohloch, S., Su, C. Y. & Sarkar, B. (2011). Eur. J. Inorg. Chem. pp. 3067–3075.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Mathew, P., Neels, A. & Albrecht, M. (2008). J. Am. Chem. Soc. 130, 13534–13535. [DOI] [PubMed]
  8. Saravanakumar, R., Ramkumar, V. & Sankararaman, S. (2011). Organometallics, 30, 1689–1694.
  9. Shaik, J. B., Ramkumar, V., Varghese, B. & Sankararaman, S. (2013). Beilstein J. Org. Chem. 9, 698–704. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015023403/su5254sup1.cif

e-71-o1041-sup1.cif (324.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023403/su5254Isup2.hkl

e-71-o1041-Isup2.hkl (324.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023403/su5254Isup3.cml

. DOI: 10.1107/S2056989015023403/su5254fig1.tif

The mol­ecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015023403/su5254fig2.tif

A view along the a axis of the crystal packing of the title compound. The C—H⋯I hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in these inter­actions have been omitted for clarity.

CCDC reference: 1440705

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES