Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 16;71(Pt 12):o1051–o1052. doi: 10.1107/S2056989015023634

Crystal structure of 4-methyl­sulfanyl-2-(2H-tetra­zol-2-yl)pyrimidine

Andreas Thomann a, Volker Huch b, Rolf W Hartmann a,c,*
PMCID: PMC4719974  PMID: 26870493

Abstract

The title compound, C6H6N6S, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The conformation of the two mol­ecules differs slightly. While the tetra­zole ring is inclined to the pyrim­idene ring by 5.48 (7) and 4.24 (7)° in mol­ecules A and B, respectively, the N—C—S—C torsion angles of the thio­methyl groups differ by ca 180°. In the crystal, the A and B mol­ecules are linked via a C—H⋯N hydrogen bond. They stack along the b-axis direction forming columns within which there are weak π–π inter­actions present [shortest inter-centroid distance = 3.6933 (13) Å].

Keywords: crystal structure, tetra­zole, pyrimidine, thio, heterocyles, SNAr reactions, π–π inter­actions

Related literature  

For applications of tetra­zolyl-substituted aromatic systems in metal–ligand research, see: Kim et al. (2008); Stoessel et al. (2010); in drug development, see: Pasternak et al. (2012); Biswas et al. (2015); in polymer synthesis, see: Yu et al. (2008); Sengupta et al. (2010). For the synthesis of 4-methyl­sulfanyl-2-(1H-tetra­zol-1-yl)pyrimidine and the title compound, see: Thomann et al. (2014).graphic file with name e-71-o1051-scheme1.jpg

Experimental  

Crystal data  

  • C6H6N6S

  • M r = 194.23

  • Triclinic, Inline graphic

  • a = 6.3001 (17) Å

  • b = 7.393 (2) Å

  • c = 18.159 (5) Å

  • α = 91.407 (7)°

  • β = 95.864 (7)°

  • γ = 102.695 (8)°

  • V = 819.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 143 K

  • 0.22 × 0.22 × 0.01 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010) T min = 0.716, T max = 0.746

  • 15501 measured reflections

  • 4581 independent reflections

  • 3596 reflections with I > 2σ(I)

  • R int = 0.028

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.086

  • S = 1.01

  • 4581 reflections

  • 283 parameters

  • All H-atom parameters refined

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023634/su5253sup1.cif

e-71-o1051-sup1.cif (521.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023634/su5253Isup2.hkl

e-71-o1051-Isup2.hkl (364.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023634/su5253Isup3.cml

A B . DOI: 10.1107/S2056989015023634/su5253fig1.tif

The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound (2), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

A B a . DOI: 10.1107/S2056989015023634/su5253fig2.tif

The crystal packing of the two independent mol­ecules (A black; B red) of the title compound (2), viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1).

. DOI: 10.1107/S2056989015023634/su5253fig3.tif

Compounds (1) and (2).

CCDC reference: 1441424

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H1⋯N9i 0.89 (2) 2.58 (2) 3.203 (2) 129 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank Nadja Klippel for the synthesis of the title compound.

supplementary crystallographic information

S1. Comment

4-tetra­zolyl­pyrimidines are well reported scaffolds in many bioactive entities. Besides synthetic chemistry, tetra­zolyl substituted aromatic systems are also of high inter­est for example, in metal-ligand research (Kim et al., 2008; Stoessel et al., 2010), drug development (Pasternak et al., 2012; Biswas et al., 2015) and polymer discovery (Yu et al., 2008; Sengupta et al., 2010). Thus, the knowledge of the three dimensional structure of these moieties is of crucial importance for the rational design in these fields of research. Recently, we have reported a novel method to synthesize such compounds (Thomann et al., 2014). We have reported the synthesis of 4-(methyl­thio)-2-(1H-tetra­zol-1-yl)pyrimidine (1). Inter­estingly, when scaling up the reaction, another product was found in small amounts. NMR analytical characterization revealed the compound to be the 2-tetra­zolyl regioisomer (2). To determine unequivocally proof of the structure of this compound, we determined its crystal structure.

The title compound (2), crystallized with two independent molecules (A and B) in the asymmetric unit (Fig. 1). Inter­estingly, the two molecules differ in their conformation. While the tetra­zole moieties are arranged similarly, with the tetra­zole ring is inclined to the pyrim­idene ring by 5.48 (7) and 4.24 (7) ° in molecules A and B, respectively, the thio­methyl groups have a difference of the torsion angle about the Car···S bond of ca 180° [for example, torsion angle N5—C4—S1—C6 = 0.89 (12) °, compared to torsion angle N11—C10—S2—C12 = −176.78 (10) °] indicating higher rotational freedom than the tetra­zoles (Fig. 1). The latter finding is of importance for computational chemists in medicinal chemistry, as the polarized hydrogen at atom C5 of the tetra­zole ring is able to form non-classical hydrogen bonds. Therefore, the results from the crystal structure may favour this conformational isomer for in silico predictions.

In the crystal, the A and B molecules are linked via a C—H···N hydrogen bond (Table 1 and Fig. 2). They stack along the b axis direction forming columns within which there are weak π-π inter­actions present [shortest inter-centroid distance is Cg2···Cg4i = 3.6918 (5) Å; Cg2 and Cg4 are the centroids of rings N5/N6/C1—C4 and N11/N12/C7—C10, respectively; symmetry code: (i) x, y + 1, z].

S2. Synthesis and crystallization

The title compound (2), was synthesized following a previously reported procedure (Thomann et al., 2014). A mixture of 4-chloro-2-(methyl­thio)­pyrimidine, 1H-tetra­zole and tri­ethyl­amine, in the ratio 1:1:1, was stirred under microwave irradiation at 50 W, 353 K for 1 h. The crude product was purified by flash chromatography (hexane:ethyl acetate, 8:2, Rf = 1/4) to yield a white solid (9%). Crystals formed at 294 K after 16 h from a saturated solution of 2 in ethyl acetate.1H NMR (CDCl3, 300 MHz) 8.80 (dd, J = 5.3, 0.6 Hz, 1 H), 8.77 (s, 1 H), 7.77 (dd, J = 5.3, 0.7 Hz, 1 H), 2.69 p.p.m. (d, J = 0.7 Hz, 3 H).

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in a difference Fourier map and freely refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the two independent molecules (A and B) of the title compound (2), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the two independent molecules (A black; B red) of the title compound (2), viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1).

Fig. 3.

Fig. 3.

Compounds (1) and (2).

Crystal data

C6H6N6S Z = 4
Mr = 194.23 F(000) = 400
Triclinic, P1 Dx = 1.574 Mg m3
a = 6.3001 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.393 (2) Å Cell parameters from 728 reflections
c = 18.159 (5) Å θ = 3.6–24.3°
α = 91.407 (7)° µ = 0.35 mm1
β = 95.864 (7)° T = 143 K
γ = 102.695 (8)° Cuboid, colourless
V = 819.9 (4) Å3 0.22 × 0.22 × 0.01 mm

Data collection

Bruker APEXII CCD diffractometer 3596 reflections with I > 2σ(I)
φ and ω scans Rint = 0.028
Absorption correction: multi-scan (SADABS; Bruker, 2010) θmax = 29.6°, θmin = 2.3°
Tmin = 0.716, Tmax = 0.746 h = −8→8
15501 measured reflections k = −10→10
4581 independent reflections l = −24→25

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 All H-atom parameters refined
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.2718P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
4581 reflections Δρmax = 0.35 e Å3
283 parameters Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.84117 (6) 0.83334 (5) 0.58281 (2) 0.01975 (9)
N1 1.04303 (18) 0.69484 (15) 0.84617 (6) 0.0152 (2)
N2 1.00906 (19) 0.60999 (17) 0.90974 (6) 0.0208 (3)
N3 1.24517 (19) 0.79683 (17) 0.84553 (7) 0.0209 (3)
N4 1.3498 (2) 0.77865 (18) 0.91059 (7) 0.0233 (3)
N5 0.93885 (18) 0.76012 (15) 0.72442 (6) 0.0159 (2)
N6 0.56784 (19) 0.65519 (16) 0.66803 (7) 0.0200 (3)
C1 0.8749 (2) 0.67900 (17) 0.78527 (7) 0.0148 (3)
C2 0.6647 (2) 0.58341 (19) 0.79335 (8) 0.0184 (3)
C3 0.5146 (2) 0.5770 (2) 0.73096 (8) 0.0203 (3)
C4 0.7801 (2) 0.74205 (18) 0.66783 (8) 0.0162 (3)
C5 1.2034 (2) 0.6651 (2) 0.94818 (8) 0.0209 (3)
C6 1.1309 (2) 0.9298 (2) 0.60068 (9) 0.0230 (3)
H1 0.629 (3) 0.532 (2) 0.8352 (10) 0.028 (5)*
H2 0.366 (3) 0.512 (2) 0.7313 (9) 0.023 (4)*
H3 1.235 (3) 0.634 (2) 0.9944 (11) 0.030 (5)*
H4 1.204 (3) 0.833 (2) 0.6178 (10) 0.032 (5)*
H5 1.160 (3) 1.037 (2) 0.6366 (10) 0.030 (5)*
H6 1.172 (3) 0.969 (3) 0.5531 (11) 0.040 (5)*
S2 0.91337 (6) 0.35407 (5) 0.59998 (2) 0.02003 (10)
N7 1.07557 (18) 0.19569 (15) 0.85809 (6) 0.0156 (2)
N8 1.0376 (2) 0.11547 (17) 0.92240 (7) 0.0219 (3)
N9 1.28032 (19) 0.29223 (17) 0.85739 (7) 0.0218 (3)
N10 1.3817 (2) 0.27602 (18) 0.92304 (7) 0.0241 (3)
N11 0.97742 (18) 0.26119 (15) 0.73636 (6) 0.0159 (2)
N12 0.60819 (19) 0.16413 (16) 0.67866 (7) 0.0192 (2)
C7 0.9101 (2) 0.18161 (17) 0.79690 (7) 0.0146 (3)
C8 0.6975 (2) 0.08981 (19) 0.80433 (8) 0.0181 (3)
C9 0.5511 (2) 0.0862 (2) 0.74162 (8) 0.0204 (3)
C10 0.8194 (2) 0.24779 (18) 0.67912 (8) 0.0162 (3)
C11 1.2311 (2) 0.1686 (2) 0.96118 (8) 0.0218 (3)
C12 0.6629 (3) 0.3216 (2) 0.53901 (9) 0.0256 (3)
H7 0.658 (3) 0.041 (2) 0.8462 (10) 0.028 (5)*
H8 0.400 (3) 0.022 (2) 0.7410 (10) 0.027 (4)*
H9 1.264 (3) 0.138 (3) 1.0104 (11) 0.035 (5)*
H10 0.564 (3) 0.385 (2) 0.5600 (10) 0.035 (5)*
H11 0.702 (3) 0.373 (3) 0.4949 (11) 0.037 (5)*
H12 0.600 (3) 0.192 (3) 0.5294 (10) 0.038 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02103 (18) 0.02210 (18) 0.01490 (18) 0.00253 (13) −0.00004 (13) 0.00614 (13)
N1 0.0152 (5) 0.0167 (5) 0.0130 (5) 0.0007 (4) 0.0036 (4) 0.0040 (4)
N2 0.0216 (6) 0.0250 (6) 0.0152 (6) 0.0020 (5) 0.0040 (5) 0.0078 (5)
N3 0.0155 (6) 0.0260 (6) 0.0190 (6) −0.0011 (5) 0.0024 (5) 0.0049 (5)
N4 0.0203 (6) 0.0295 (7) 0.0186 (6) 0.0031 (5) 0.0005 (5) 0.0046 (5)
N5 0.0166 (5) 0.0159 (5) 0.0149 (6) 0.0028 (4) 0.0030 (4) 0.0019 (4)
N6 0.0182 (6) 0.0193 (6) 0.0212 (6) 0.0019 (4) 0.0009 (5) 0.0034 (5)
C1 0.0155 (6) 0.0138 (6) 0.0150 (6) 0.0030 (5) 0.0025 (5) 0.0011 (5)
C2 0.0186 (7) 0.0180 (7) 0.0181 (7) 0.0012 (5) 0.0057 (5) 0.0042 (5)
C3 0.0168 (7) 0.0200 (7) 0.0232 (8) 0.0008 (5) 0.0039 (6) 0.0026 (5)
C4 0.0181 (6) 0.0149 (6) 0.0157 (7) 0.0034 (5) 0.0026 (5) 0.0020 (5)
C5 0.0221 (7) 0.0251 (7) 0.0153 (7) 0.0044 (6) 0.0022 (6) 0.0045 (5)
C6 0.0203 (7) 0.0305 (8) 0.0190 (7) 0.0053 (6) 0.0042 (6) 0.0093 (6)
S2 0.02219 (18) 0.02074 (18) 0.01648 (18) 0.00230 (13) 0.00321 (14) 0.00600 (13)
N7 0.0134 (5) 0.0181 (5) 0.0149 (6) 0.0015 (4) 0.0037 (4) 0.0045 (4)
N8 0.0203 (6) 0.0281 (7) 0.0170 (6) 0.0028 (5) 0.0044 (5) 0.0090 (5)
N9 0.0152 (6) 0.0265 (6) 0.0213 (6) −0.0005 (5) 0.0014 (5) 0.0057 (5)
N10 0.0182 (6) 0.0316 (7) 0.0203 (7) 0.0015 (5) −0.0004 (5) 0.0048 (5)
N11 0.0159 (5) 0.0160 (5) 0.0155 (6) 0.0021 (4) 0.0029 (4) 0.0033 (4)
N12 0.0170 (6) 0.0214 (6) 0.0184 (6) 0.0020 (5) 0.0026 (5) 0.0016 (5)
C7 0.0139 (6) 0.0142 (6) 0.0160 (6) 0.0039 (5) 0.0019 (5) 0.0008 (5)
C8 0.0171 (7) 0.0200 (7) 0.0170 (7) 0.0018 (5) 0.0056 (5) 0.0036 (5)
C9 0.0164 (7) 0.0233 (7) 0.0206 (7) 0.0019 (5) 0.0034 (6) 0.0014 (5)
C10 0.0189 (7) 0.0139 (6) 0.0160 (7) 0.0039 (5) 0.0023 (5) 0.0008 (5)
C11 0.0188 (7) 0.0294 (8) 0.0168 (7) 0.0039 (6) 0.0023 (6) 0.0060 (6)
C12 0.0305 (8) 0.0281 (8) 0.0181 (8) 0.0075 (7) −0.0006 (6) 0.0034 (6)

Geometric parameters (Å, º)

S1—C4 1.7453 (15) S2—C10 1.7487 (15)
S1—C6 1.8004 (16) S2—C12 1.7992 (16)
N1—N3 1.3311 (16) N7—N9 1.3314 (16)
N1—N2 1.3412 (16) N7—N8 1.3421 (16)
N1—C1 1.4347 (17) N7—C7 1.4291 (17)
N2—C5 1.3207 (19) N8—C11 1.3182 (19)
N3—N4 1.3176 (17) N9—N10 1.3148 (17)
N4—C5 1.356 (2) N10—C11 1.3566 (19)
N5—C1 1.3267 (17) N11—C7 1.3237 (17)
N5—C4 1.3412 (17) N11—C10 1.3496 (17)
N6—C3 1.3336 (19) N12—C10 1.3377 (18)
N6—C4 1.3506 (18) N12—C9 1.3393 (19)
C1—C2 1.3815 (19) C7—C8 1.3837 (19)
C2—C3 1.393 (2) C8—C9 1.386 (2)
C2—H1 0.885 (19) C8—H7 0.886 (19)
C3—H2 0.951 (17) C9—H8 0.965 (18)
C5—H3 0.891 (19) C11—H9 0.940 (19)
C6—H4 0.974 (17) C12—H10 0.955 (19)
C6—H5 0.988 (17) C12—H11 0.93 (2)
C6—H6 0.96 (2) C12—H12 0.957 (19)
C4—S1—C6 101.92 (7) C10—S2—C12 101.37 (8)
N3—N1—N2 113.78 (11) N9—N7—N8 113.63 (11)
N3—N1—C1 123.45 (11) N9—N7—C7 123.40 (11)
N2—N1—C1 122.75 (11) N8—N7—C7 122.96 (11)
C5—N2—N1 101.28 (11) C11—N8—N7 101.34 (12)
N4—N3—N1 105.82 (12) N10—N9—N7 105.89 (12)
N3—N4—C5 106.17 (12) N9—N10—C11 106.19 (12)
C1—N5—C4 114.47 (12) C7—N11—C10 114.67 (12)
C3—N6—C4 115.71 (12) C10—N12—C9 115.82 (12)
N5—C1—C2 125.31 (12) N11—C7—C8 125.20 (12)
N5—C1—N1 115.33 (12) N11—C7—N7 115.25 (12)
C2—C1—N1 119.36 (12) C8—C7—N7 119.55 (12)
C1—C2—C3 114.59 (13) C7—C8—C9 114.40 (13)
C1—C2—H1 122.4 (11) C7—C8—H7 122.5 (11)
C3—C2—H1 123.0 (12) C9—C8—H7 123.1 (12)
N6—C3—C2 123.19 (13) N12—C9—C8 123.46 (14)
N6—C3—H2 116.5 (10) N12—C9—H8 116.1 (11)
C2—C3—H2 120.3 (10) C8—C9—H8 120.5 (11)
N5—C4—N6 126.72 (13) N12—C10—N11 126.44 (13)
N5—C4—S1 119.87 (10) N12—C10—S2 119.96 (10)
N6—C4—S1 113.41 (10) N11—C10—S2 113.60 (10)
N2—C5—N4 112.96 (13) N8—C11—N10 112.94 (13)
N2—C5—H3 124.0 (12) N8—C11—H9 124.6 (12)
N4—C5—H3 123.0 (12) N10—C11—H9 122.5 (12)
S1—C6—H4 108.9 (11) S2—C12—H10 109.7 (11)
S1—C6—H5 110.3 (10) S2—C12—H11 105.7 (12)
H4—C6—H5 112.5 (14) H10—C12—H11 110.6 (16)
S1—C6—H6 103.5 (11) S2—C12—H12 110.3 (11)
H4—C6—H6 110.8 (15) H10—C12—H12 111.9 (16)
H5—C6—H6 110.4 (15) H11—C12—H12 108.4 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H1···N9i 0.89 (2) 2.58 (2) 3.203 (2) 129 (2)

Symmetry code: (i) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5253).

References

  1. Biswas, D., Ding, F.-X., Dong, S., Gu, X., Jiang, J., Pasternak, A., Suzuki, T., Vacca, J. & Xu, S. (2015). PCT Int. Appl. WO2015103756 A1.
  2. Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Kim, Y.-J., Lee, K.-E., Jeon, H.-T., Huh, H. S. & Lee, S. W. (2008). Inorg. Chim. Acta, 361, 2159–2165.
  4. Pasternak, A., Dejesus, R. K., Zhu, Y., Yang, L., Walsh, S., Pio, B., Shahripour, A., Tang, H., Belyk, K. & Kim, D. (2012). PCT Int. Appl. WO 2012058134 A1.
  5. Sengupta, O. & Mukherjee, P. S. (2010). Inorg. Chem. 49, 8583–8590. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Stoessel, P., Heil, H., Jooseten, D., Pflumm, C., Gerhard, A. & Breuning, E. (2010). PCT Int. Appl. WO 2010086089 A1.
  10. Thomann, A., Börger, C., Empting, M. & Hartmann, R. W. (2014). Synlett, 25, 935–938.
  11. Yu, L., Zhang, Z., Chen, X., Zhang, W., Wu, J., Cheng, Z., Zhu, J. & Zhu, X. (2008). J. Polym. Sci. A Polym. Chem. 46, 682–691.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023634/su5253sup1.cif

e-71-o1051-sup1.cif (521.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023634/su5253Isup2.hkl

e-71-o1051-Isup2.hkl (364.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023634/su5253Isup3.cml

A B . DOI: 10.1107/S2056989015023634/su5253fig1.tif

The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound (2), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

A B a . DOI: 10.1107/S2056989015023634/su5253fig2.tif

The crystal packing of the two independent mol­ecules (A black; B red) of the title compound (2), viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1).

. DOI: 10.1107/S2056989015023634/su5253fig3.tif

Compounds (1) and (2).

CCDC reference: 1441424

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES