Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 16;71(Pt 12):o1053–o1054. doi: 10.1107/S2056989015023609

Crystal structure of 2-(5-meth­oxy-1-benzo­furan-3-yl)acetic acid

Ramakrishna Gowda a,*, K V Arjuna Gowda b, M Keshava Reddy c, Mahantesha Basanagouda d
PMCID: PMC4719975  PMID: 26870494

Abstract

The benzo­furan residue in the title compound, C11H10O4, is essentially planar (the r.m.s. deviation for the nine non-H atoms = 0.011 Å). While the meth­oxy group is coplanar with the fused ring system [C—C—O—C torsion angle = 3.1 (3)°], the acetic acid residue occupies a position almost prime [C—C—C—C = 77.0 (2)°]. In the crystal, centrosymmetrically related mol­ecules are linked by O—H⋯O hydrogen bonds to form eight-membered {⋯HOCO}2 synthons. The dimeric aggregates assemble into supra­molecular layers in the ab plane via benzene-C—H⋯O(ring) inter­actions.

Keywords: crystal structure, benzo­furan, hydrogen bonding

Related literature  

For a related structures and background to benzo­furans and their applications, see: Dawood (2013); Khanam & Shamsuzzaman (2015); Radadiya & Shah (2015); Naik et al. (2015); Nevagi et al. (2015). For the synthesis, see: Basanagouda et al. (2015).graphic file with name e-71-o1053-scheme1.jpg

Experimental  

Crystal data  

  • C11H10O4

  • M r = 206.19

  • Monoclinic, Inline graphic

  • a = 5.8096 (3) Å

  • b = 13.2034 (5) Å

  • c = 12.5738 (6) Å

  • β = 97.641 (3)°

  • V = 955.93 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.961, T max = 0.979

  • 12813 measured reflections

  • 2094 independent reflections

  • 1621 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.110

  • S = 1.12

  • 2094 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015023609/tk5414sup1.cif

e-71-o1053-sup1.cif (480.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023609/tk5414Isup2.hkl

e-71-o1053-Isup2.hkl (168.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023609/tk5414Isup3.cml

. DOI: 10.1107/S2056989015023609/tk5414fig1.tif

Mol­ecular structure of the title compound showing atom labelling and 40% probability displacement ellipsoids.

CCDC reference: 1401314

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.6357 (17) 174
C2—H2⋯O4ii 0.93 2.55 3.4629 (19) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MB thanks UGC–SWRO, Bangalore, for providing a Minor Research Project (reference No. 1415-MRP/14–15/KAKA067/UGC–SWRO, Diary No. 1709). The authors also thank the SAIF IIT Madras, Chennai, for the data collection.

supplementary crystallographic information

S1. Comment

Benzofuran scaffolds have drawn considerable attention due to their physiological and chemotherapeutic properties as well as their widespread occurrence in nature. They display potent biological properties including antihyperglycemic, analgesic, antiparasitic, antimicrobial, antitumor and kinase inhibitor activities (Dawood, 2013; Khanam & Shamsuzzaman, 2015; Radadiya & Shah, 2015; Naik et al. 2015; Nevagi et al. 2015). In addition, substituted benzofurans find application such as fluorescent sensors, oxidant, antioxidants and brightening agents. The derivatives of 2,3-dihydro-benzofuranyl-3-acetic acid have been reported to be potent, selective and orally bioavailable G protein-coupled receptor 40 (GPR40) and free fatty acid receptor 1 agonists (FFA1) (Basanagouda et al., 2015). A perspective view of the molecule is shown in Fig. 1 and geomtric data for the intermolecular interactions are listed in Table 1.

S2. Experimental

6-Methoxy-4-bromomethylcoumarin (10 mM) was refluxed in 1 M NaOH (100 ml) for 2 h (monitored by TLC). The reaction mixture was cooled, neutralized with 1 M HCl and the obtained product was filtered off and dried. Colourless blocks were obtained by recrystallization from ethanol and ethyl acetate mixture by slow evaporation.

S3. Refinement

The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C). The oxygen-bound H-atom was also placed in a calculated position (O—H = 0.82 Å) with Uiso(H) set to 1.5Uequiv(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing atom labelling and 40% probability displacement ellipsoids.

Crystal data

C11H10O4 Dx = 1.433 Mg m3
Mr = 206.19 Melting point: 413 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 5.8096 (3) Å Cell parameters from 5229 reflections
b = 13.2034 (5) Å θ = 2.2–28.6°
c = 12.5738 (6) Å µ = 0.11 mm1
β = 97.641 (3)° T = 296 K
V = 955.93 (8) Å3 Block, colourless
Z = 4 0.35 × 0.30 × 0.25 mm
F(000) = 432

Data collection

Bruker Kappa APEXII CCD diffractometer 2094 independent reflections
Radiation source: fine-focus sealed tube 1621 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω and φ scan θmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −7→7
Tmin = 0.961, Tmax = 0.979 k = −16→16
12813 measured reflections l = −16→16

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.4069P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110 (Δ/σ)max < 0.001
S = 1.12 Δρmax = 0.22 e Å3
2094 reflections Δρmin = −0.16 e Å3
137 parameters Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.017 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4010 (3) 0.61606 (13) 0.80077 (14) 0.0432 (4)
C2 0.2178 (3) 0.67578 (12) 0.82316 (13) 0.0389 (4)
H2 0.1770 0.6787 0.8922 0.047*
C3 0.0964 (3) 0.73116 (11) 0.74025 (12) 0.0349 (4)
C4 0.1631 (3) 0.72515 (13) 0.63818 (13) 0.0398 (4)
C5 0.3460 (3) 0.66724 (14) 0.61521 (14) 0.0477 (5)
H5 0.3882 0.6653 0.5464 0.057*
C6 0.4647 (3) 0.61208 (14) 0.69782 (15) 0.0479 (5)
H6 0.5890 0.5716 0.6848 0.057*
C7 0.7098 (4) 0.50545 (17) 0.8728 (2) 0.0646 (6)
H7A 0.7685 0.4733 0.9394 0.097*
H7B 0.6680 0.4547 0.8190 0.097*
H7C 0.8272 0.5488 0.8506 0.097*
C8 −0.0997 (3) 0.79821 (12) 0.73082 (13) 0.0378 (4)
C9 −0.1369 (3) 0.82596 (14) 0.62760 (14) 0.0476 (4)
H9 −0.2559 0.8692 0.5995 0.057*
C10 −0.2391 (3) 0.82719 (13) 0.81742 (14) 0.0421 (4)
H10A −0.2708 0.7666 0.8566 0.051*
H10B −0.3869 0.8541 0.7845 0.051*
C11 −0.1270 (3) 0.90353 (12) 0.89552 (13) 0.0367 (4)
O1 −0.2484 (2) 0.92135 (9) 0.97334 (10) 0.0491 (4)
H1 −0.1813 0.9636 1.0141 0.074*
O2 0.0578 (2) 0.94412 (10) 0.88700 (10) 0.0514 (4)
O3 0.5123 (3) 0.56354 (12) 0.88677 (12) 0.0665 (4)
O4 0.0193 (2) 0.78381 (10) 0.56745 (9) 0.0503 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0431 (9) 0.0419 (9) 0.0459 (10) −0.0026 (7) 0.0101 (8) −0.0053 (7)
C2 0.0428 (9) 0.0434 (9) 0.0328 (8) −0.0051 (7) 0.0133 (7) −0.0068 (7)
C3 0.0381 (8) 0.0356 (8) 0.0329 (8) −0.0099 (7) 0.0113 (6) −0.0089 (6)
C4 0.0456 (9) 0.0428 (9) 0.0325 (8) −0.0113 (7) 0.0114 (7) −0.0072 (7)
C5 0.0537 (11) 0.0543 (10) 0.0394 (9) −0.0101 (9) 0.0218 (8) −0.0140 (8)
C6 0.0464 (10) 0.0477 (10) 0.0535 (11) −0.0024 (8) 0.0215 (8) −0.0139 (8)
C7 0.0515 (12) 0.0578 (12) 0.0832 (15) 0.0092 (10) 0.0038 (11) −0.0052 (11)
C8 0.0383 (9) 0.0399 (8) 0.0360 (8) −0.0087 (7) 0.0075 (7) −0.0069 (7)
C9 0.0477 (10) 0.0514 (10) 0.0439 (10) −0.0038 (8) 0.0065 (8) −0.0018 (8)
C10 0.0363 (9) 0.0472 (9) 0.0438 (9) −0.0026 (7) 0.0093 (7) −0.0071 (7)
C11 0.0408 (9) 0.0362 (8) 0.0349 (8) 0.0018 (7) 0.0118 (7) −0.0002 (6)
O1 0.0558 (8) 0.0503 (7) 0.0461 (7) −0.0115 (6) 0.0248 (6) −0.0119 (6)
O2 0.0507 (8) 0.0599 (8) 0.0476 (7) −0.0158 (6) 0.0207 (6) −0.0172 (6)
O3 0.0661 (9) 0.0760 (10) 0.0590 (9) 0.0257 (8) 0.0144 (7) 0.0081 (7)
O4 0.0604 (8) 0.0598 (8) 0.0322 (6) −0.0064 (6) 0.0114 (6) −0.0009 (5)

Geometric parameters (Å, º)

C1—O3 1.372 (2) C7—H7A 0.9600
C1—C2 1.383 (2) C7—H7B 0.9600
C1—C6 1.394 (2) C7—H7C 0.9600
C2—C3 1.387 (2) C8—C9 1.338 (2)
C2—H2 0.9300 C8—C10 1.491 (2)
C3—C4 1.391 (2) C9—O4 1.374 (2)
C3—C8 1.435 (2) C9—H9 0.9300
C4—C5 1.371 (2) C10—C11 1.495 (2)
C4—O4 1.375 (2) C10—H10A 0.9700
C5—C6 1.377 (3) C10—H10B 0.9700
C5—H5 0.9300 C11—O2 1.217 (2)
C6—H6 0.9300 C11—O1 1.3014 (18)
C7—O3 1.410 (2) O1—H1 0.8200
O3—C1—C2 115.00 (15) O3—C7—H7C 109.5
O3—C1—C6 123.86 (17) H7A—C7—H7C 109.5
C2—C1—C6 121.13 (17) H7B—C7—H7C 109.5
C1—C2—C3 118.41 (15) C9—C8—C3 105.85 (15)
C1—C2—H2 120.8 C9—C8—C10 127.22 (17)
C3—C2—H2 120.8 C3—C8—C10 126.89 (15)
C2—C3—C4 119.14 (15) C8—C9—O4 112.94 (17)
C2—C3—C8 134.93 (14) C8—C9—H9 123.5
C4—C3—C8 105.92 (15) O4—C9—H9 123.5
C5—C4—O4 126.81 (15) C8—C10—C11 114.92 (14)
C5—C4—C3 123.03 (17) C8—C10—H10A 108.5
O4—C4—C3 110.16 (15) C11—C10—H10A 108.5
C4—C5—C6 117.44 (15) C8—C10—H10B 108.5
C4—C5—H5 121.3 C11—C10—H10B 108.5
C6—C5—H5 121.3 H10A—C10—H10B 107.5
C5—C6—C1 120.83 (17) O2—C11—O1 123.98 (15)
C5—C6—H6 119.6 O2—C11—C10 123.47 (14)
C1—C6—H6 119.6 O1—C11—C10 112.55 (14)
O3—C7—H7A 109.5 C11—O1—H1 109.5
O3—C7—H7B 109.5 C1—O3—C7 118.88 (16)
H7A—C7—H7B 109.5 C9—O4—C4 105.13 (13)
O3—C1—C2—C3 −179.94 (15) C4—C3—C8—C9 0.53 (18)
C6—C1—C2—C3 0.7 (3) C2—C3—C8—C10 −1.0 (3)
C1—C2—C3—C4 −0.3 (2) C4—C3—C8—C10 178.12 (15)
C1—C2—C3—C8 178.71 (17) C3—C8—C9—O4 −0.6 (2)
C2—C3—C4—C5 −0.5 (2) C10—C8—C9—O4 −178.15 (15)
C8—C3—C4—C5 −179.78 (15) C9—C8—C10—C11 −105.9 (2)
C2—C3—C4—O4 178.93 (14) C3—C8—C10—C11 77.0 (2)
C8—C3—C4—O4 −0.33 (17) C8—C10—C11—O2 4.0 (3)
O4—C4—C5—C6 −178.48 (16) C8—C10—C11—O1 −175.80 (15)
C3—C4—C5—C6 0.9 (3) C2—C1—O3—C7 −176.25 (17)
C4—C5—C6—C1 −0.4 (3) C6—C1—O3—C7 3.1 (3)
O3—C1—C6—C5 −179.65 (17) C8—C9—O4—C4 0.38 (19)
C2—C1—C6—C5 −0.3 (3) C5—C4—O4—C9 179.42 (17)
C2—C3—C8—C9 −178.54 (18) C3—C4—O4—C9 −0.01 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.82 2.6357 (17) 174
C2—H2···O4ii 0.93 2.55 3.4629 (19) 169

Symmetry codes: (i) −x, −y+2, −z+2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5414).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  2. Basanagouda, M., Narayanachar, Majati, I. B., Mulimani, S. S., Sunnal, S. B., Nadiger, R. V., Ghanti, A. S., Gudageri, S. F., Naik, R. & Nayak, A. (2015). Synth. Commun. 45, 2195–2202.
  3. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA
  4. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  5. Dawood, K. M. (2013). Exp. Opin. Ther. Patents, 23, 1133–1156. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Khanam, H. & Shamsuzzaman (2015). Eur. J. Med. Chem. 97, 483–504. [DOI] [PubMed]
  8. Naik, R., Harmalkar, D. S., Xu, X., Jang, K. & Lee, K. (2015). Eur. J. Med. Chem. 90, 379–393. [DOI] [PubMed]
  9. Nevagi, R. J., Dighe, S. N. & Dighe, S. N. (2015). Eur. J. Med. Chem. 97, 561–581. [DOI] [PubMed]
  10. Radadiya, A. & Shah, A. B. (2015). Eur. J. Med. Chem. 97, 356–376. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015023609/tk5414sup1.cif

e-71-o1053-sup1.cif (480.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023609/tk5414Isup2.hkl

e-71-o1053-Isup2.hkl (168.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023609/tk5414Isup3.cml

. DOI: 10.1107/S2056989015023609/tk5414fig1.tif

Mol­ecular structure of the title compound showing atom labelling and 40% probability displacement ellipsoids.

CCDC reference: 1401314

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES