Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 16;71(Pt 12):o1063–o1064. doi: 10.1107/S2056989015023853

Crystal structure of (1Z,2E)-cinnamaldehyde oxime

Bernhard Bugenhagen a, Nuha Al Soom b, Yosef Al Jasem c, Thies Thiemann b,*
PMCID: PMC4719980  PMID: 26870499

Abstract

The title compound, C9H9NO, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. The conformation of the two mol­ecules differs slightly with the phenyl ring in mol­ecule A, forming a dihedral angle of 15.38 (12)° with the oxime group (O—N=C), compared to the corresponding angle of 26.29 (11)° in mol­ecule B. In the crystal, the A and B mol­ecules are linked head-to-head by O—H⋯N hydrogen bonds, forming –ABAB– zigzag chains along [010]. Within the chains and between neighbouring chains there are C—H⋯π inter­actions present, forming a three-dimensional structure.

Keywords: crystal structure, cinnamaldehyde, oxime, conformers, O—H⋯N hydrogen bonding, C—H⋯π inter­actions

Related literature  

For the other methods of preparation of the title compound, see: Mirjafari et al. (2011); Kitahara et al. (2008). For the uses of a such compound, see: Narsaiah & Nagaiah (2004); Jasem et al. (2014); Garton et al. (2010); Patil et al. (2012); Kaur et al. (2006); Boruah & Konwar (2012).graphic file with name e-71-o1063-scheme1.jpg

Experimental  

Crystal data  

  • C9H9NO

  • M r = 147.17

  • Orthorhombic, Inline graphic

  • a = 10.231 (5) Å

  • b = 7.584 (3) Å

  • c = 41.816 (18) Å

  • V = 3245 (2) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.2 × 0.2 × 0.1 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.666, T max = 0.746

  • 34431 measured reflections

  • 3944 independent reflections

  • 3724 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.113

  • S = 1.10

  • 3944 reflections

  • 207 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023853/su5260sup1.cif

e-71-o1063-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023853/su5260Isup2.hkl

e-71-o1063-Isup2.hkl (314.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023853/su5260Isup3.cml

A B . DOI: 10.1107/S2056989015023853/su5260fig1.tif

A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015023853/su5260fig2.tif

A partial view along the a axis of the crystal packing of the title compound. The O—H⋯N hydrogen bonds, and the C—H⋯π contacts between adjacent mol­ecules are shown as dashed lines (see Table 1).

b b . DOI: 10.1107/S2056989015023853/su5260fig3.tif

A view along the b axis of three stacked mol­ecular motifs made of A (blue) and B (green) inter­connected mol­ecules forming chains along the b axis. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1).

CCDC reference: 1441984

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of rings C1A–C6A and C1B–C6B, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1B i 0.91 (2) 1.85 (2) 2.755 (2) 174 (2)
O1B—H1B⋯N1A ii 0.92 (2) 1.95 (2) 2.853 (2) 170 (2)
C2A—H2ACg1iii 0.95 2.70 3.563 (2) 151
C5B—H5BCg2iv 0.95 2.80 3.508 (2) 132
C9B—H9BCg2v 0.95 2.82 3.717 (2) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

S1. Structural commentary

Many uses of cinnamaldehyde oxime have been reported, such as the conversion to cinnamo­nitrile (Narsaiah & Nagaiah 2004; Jasem et al. 2014), conversion to cinnamide (Garton et al. 2010), and as a starting material for N-heterocycles: tetra­zole (Patil et al. 2012), isoxazoline (Kaur et al. 2006), and izoxazoline (Boruah & Konwar 2012).

The title compound, crystallized with two independent molecules A and B in the asymmetric unit (Fig. 1). The aromatic ring in molecule A (C1A—C6A) forms a dihedral angle of 15.38 (12)° with the oxime group (C9A/N1A/O1A), compared to a corresponding angle of 26.29 (11)° in molecule B. This conformational difference between molecules A and B is due to bond rotation, not only about bonds (C1—C7) and (C8—C9) but also of that of (C7—C8), where in molecule A the torsion angle C1—C7—C8—C9 is −174.32 (11)° while in molecule B the corresponding angle is −179.24 (11) °. The bond lengths, C7—C8, of molecules A and B are similar.

In the crystal, the A molecules align opposite B molecules, and they are linked via O—H···N hydrogen bonds forming –A—B—A—B– zigzag chains propagating along the b axis (Table 1 and Fig. 2). Adjacent molecules of the same type are tilted against each other, with the aromatic rings (C1—C6) being inclined to one another by 77.64 (2) and 59.04 (2)° for molecules A and B, respectively. In addition, adjacent molecules of the same type exhibit weak C—H..π (C2A—H2A···Cg1 and C5B—H5B···Cg2) contacts along the b axis direction (Table 1 and Fig. 2). Along the c axis, inversion related dimers stack with an offset of 11.47 (2) Å and connected via a weak C—H..π (C9B—H9B···Cg2) contact (Fig. 3 and Table 1).

S2. Synthesis and crystallization

To a solution of cinnamaldehyde (1.32 g, 10 mmol) in ethanol (20 ml) was added drop wise a solution of hydroxyl­amine hydro­chloride (2.74 g, 39.7 mmol) in water (7.5 ml), and the resulting mixture was stirred at 60 oC for 3 h. Thereafter, about half of the solvent was removed in vacuo, and the remaining reaction mixture was poured into water (50 ml) and extracted with CHCl3 (3 × 20 ml). The combined organic layer was dried over anhydrous MgSO4 and concentrated in vacuo. The residue was subjected to column chromatography (eluant: CH2Cl2) to yield the title compound as colourless needles (yield: 956 mg, 65%; m.p. 348 – 349 K). IR (νmax, KBr, cm−1) 3356, 1630, 1444, 1291, 987, 976, 955, 747, 691; 1H NMR (400 MHz, CDCl3, δH) 6.84 (1H, d, 3J = 5.6 Hz), 7.28 – 7.55 (6H, m), 7.94 (1H, t, 3J = 4.8 Hz); δC (100.5 MHz, CDCl3) 121.5 (CH), 127.0 (2 C, CH), 128.8 (2 C, CH), 129.0 (CH), 135.7 (Cquat), 139.2 (CH), 152.0 (CH). Crystals for X-ray analysis were grown from a solution in CH2Cl2/hexane (1:1, v/v) by slow evaporation of the solvents.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The OH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were fixed geometrically (C—H = 0.95 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A partial view along the a axis of the crystal packing of the title compound. The O—H···N hydrogen bonds, and the C—H···π contacts between adjacent molecules are shown as dashed lines (see Table 1).

Fig. 3.

Fig. 3.

A view along the b axis of three stacked molecular motifs made of A (blue) and B (green) interconnected molecules forming chains along the b axis. The hydrogen bonds and C—H···π interactions are shown as dashed lines (see Table 1).

Crystal data

C9H9NO Dx = 1.205 Mg m3
Mr = 147.17 Melting point: 348 K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
a = 10.231 (5) Å Cell parameters from 9623 reflections
b = 7.584 (3) Å θ = 2.2–28.4°
c = 41.816 (18) Å µ = 0.08 mm1
V = 3245 (2) Å3 T = 100 K
Z = 16 Block, colourless
F(000) = 1248 0.2 × 0.2 × 0.1 mm

Data collection

Bruker APEXII CCD diffractometer 3724 reflections with I > 2σ(I)
φ and ω scans Rint = 0.022
Absorption correction: multi-scan (SADABS; Bruker, 2013) θmax = 28.6°, θmin = 1.0°
Tmin = 0.666, Tmax = 0.746 h = −13→13
34431 measured reflections k = −10→10
3944 independent reflections l = −55→53

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0445P)2 + 2.1543P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
3944 reflections Δρmax = 0.45 e Å3
207 parameters Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1B 0.27939 (9) 0.14918 (13) 0.83349 (2) 0.0214 (2)
O1A 0.57897 (9) 0.36622 (12) 0.60376 (2) 0.0210 (2)
N1A 0.65418 (10) 0.21056 (14) 0.60658 (2) 0.0172 (2)
N1B 0.37727 (11) 0.02042 (14) 0.83755 (2) 0.0189 (2)
C9A 0.66426 (11) 0.12592 (16) 0.57973 (3) 0.0162 (2)
H9A 0.7096 0.0167 0.5804 0.019*
C7A 0.65649 (11) 0.10018 (15) 0.52143 (3) 0.0146 (2)
H7A 0.7135 0.0024 0.5242 0.017*
C1A 0.62383 (11) 0.14952 (15) 0.48805 (3) 0.0137 (2)
C6A 0.52038 (11) 0.26618 (15) 0.48030 (3) 0.0152 (2)
H6A 0.4665 0.3124 0.4968 0.018*
C2B 0.50012 (12) −0.04774 (16) 0.69394 (3) 0.0171 (2)
H2B 0.5770 −0.1114 0.6993 0.021*
C5A 0.49730 (12) 0.31367 (16) 0.44838 (3) 0.0182 (2)
H5A 0.4278 0.3920 0.4434 0.022*
C7B 0.44406 (12) −0.04211 (15) 0.75192 (3) 0.0167 (2)
H7B 0.5154 −0.1202 0.7552 0.020*
C2A 0.70079 (12) 0.08011 (17) 0.46297 (3) 0.0189 (2)
H2A 0.7689 −0.0008 0.4678 0.023*
C8A 0.61346 (11) 0.18013 (15) 0.54843 (3) 0.0152 (2)
H8A 0.5502 0.2716 0.5471 0.018*
C1B 0.41218 (11) 0.00325 (15) 0.71837 (3) 0.0153 (2)
C3B 0.47534 (13) −0.00548 (17) 0.66187 (3) 0.0202 (3)
H3B 0.5352 −0.0408 0.6457 0.024*
C5B 0.27317 (13) 0.13917 (17) 0.67760 (3) 0.0224 (3)
H5B 0.1963 0.2023 0.6720 0.027*
C6B 0.29760 (12) 0.09644 (16) 0.70966 (3) 0.0188 (2)
H6B 0.2368 0.1303 0.7257 0.023*
C4B 0.36242 (14) 0.08882 (17) 0.65358 (3) 0.0228 (3)
H4B 0.3461 0.1186 0.6319 0.027*
C8B 0.38138 (12) 0.01692 (16) 0.77854 (3) 0.0170 (2)
H8B 0.3088 0.0942 0.7763 0.020*
C9B 0.42381 (13) −0.03653 (16) 0.81057 (3) 0.0191 (2)
H9B 0.4921 −0.1212 0.8117 0.023*
C4A 0.57625 (13) 0.24623 (18) 0.42372 (3) 0.0220 (3)
H4A 0.5607 0.2799 0.4022 0.026*
C3A 0.67797 (14) 0.12902 (18) 0.43106 (3) 0.0235 (3)
H3A 0.7314 0.0828 0.4145 0.028*
H1B 0.248 (2) 0.163 (2) 0.8539 (4) 0.039 (5)*
H1A 0.588 (2) 0.415 (3) 0.6235 (5) 0.048 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1B 0.0216 (4) 0.0283 (5) 0.0144 (4) 0.0041 (4) 0.0037 (3) 0.0011 (3)
O1A 0.0301 (5) 0.0197 (4) 0.0131 (4) 0.0029 (4) −0.0024 (3) −0.0010 (3)
N1A 0.0181 (5) 0.0191 (5) 0.0144 (5) −0.0022 (4) −0.0008 (4) 0.0040 (4)
N1B 0.0237 (5) 0.0183 (5) 0.0146 (5) −0.0013 (4) −0.0001 (4) 0.0023 (4)
C9A 0.0169 (5) 0.0174 (5) 0.0141 (5) −0.0026 (4) −0.0012 (4) 0.0033 (4)
C7A 0.0143 (5) 0.0136 (5) 0.0159 (5) −0.0011 (4) −0.0030 (4) 0.0012 (4)
C1A 0.0158 (5) 0.0118 (5) 0.0134 (5) −0.0026 (4) −0.0024 (4) −0.0012 (4)
C6A 0.0148 (5) 0.0147 (5) 0.0160 (5) −0.0010 (4) −0.0008 (4) −0.0011 (4)
C2B 0.0167 (5) 0.0167 (5) 0.0178 (5) −0.0018 (4) 0.0025 (4) −0.0009 (4)
C5A 0.0179 (5) 0.0171 (5) 0.0195 (6) −0.0008 (4) −0.0054 (4) 0.0022 (4)
C7B 0.0196 (5) 0.0142 (5) 0.0164 (5) 0.0014 (4) 0.0010 (4) 0.0006 (4)
C2A 0.0206 (6) 0.0189 (6) 0.0172 (6) 0.0051 (5) −0.0019 (4) −0.0028 (4)
C8A 0.0164 (5) 0.0151 (5) 0.0141 (5) −0.0020 (4) −0.0023 (4) 0.0015 (4)
C1B 0.0189 (5) 0.0125 (5) 0.0144 (5) −0.0018 (4) 0.0019 (4) −0.0005 (4)
C3B 0.0254 (6) 0.0203 (6) 0.0149 (5) −0.0065 (5) 0.0053 (5) −0.0020 (4)
C5B 0.0265 (7) 0.0189 (6) 0.0218 (6) 0.0021 (5) −0.0048 (5) 0.0013 (5)
C6B 0.0211 (6) 0.0179 (6) 0.0175 (6) 0.0020 (5) 0.0019 (4) −0.0010 (4)
C4B 0.0324 (7) 0.0207 (6) 0.0152 (5) −0.0065 (5) −0.0032 (5) 0.0023 (5)
C8B 0.0206 (5) 0.0157 (5) 0.0146 (5) −0.0005 (4) 0.0015 (4) 0.0009 (4)
C9B 0.0239 (6) 0.0171 (6) 0.0162 (5) 0.0001 (5) 0.0007 (4) 0.0022 (4)
C4A 0.0290 (6) 0.0236 (6) 0.0133 (5) −0.0014 (5) −0.0052 (5) 0.0011 (5)
C3A 0.0299 (7) 0.0270 (7) 0.0137 (5) 0.0033 (5) 0.0015 (5) −0.0048 (5)

Geometric parameters (Å, º)

C1A—C2A 1.4133 (17) C6A—H6A 0.9500
C1A—C6A 1.4171 (16) C6B—H6B 0.9500
C1B—C6B 1.4166 (17) C7A—C8A 1.3548 (17)
C2A—C3A 1.4043 (18) C7A—C1A 1.4834 (16)
C2A—H2A 0.9500 C7A—H7A 0.9500
C2B—C3B 1.4020 (17) C7B—C8B 1.3606 (17)
C2B—C1B 1.4152 (16) C7B—C1B 1.4806 (17)
C2B—H2B 0.9500 C7B—H7B 0.9500
C3A—H3A 0.9500 C8A—H8A 0.9500
C3B—C4B 1.402 (2) C8B—C9B 1.4649 (17)
C3B—H3B 0.9500 C8B—H8B 0.9500
C4A—C3A 1.4027 (19) C9A—C8A 1.4671 (16)
C4A—H4A 0.9500 C9A—H9A 0.9500
C4B—H4B 0.9500 C9B—H9B 0.9500
C5A—C4A 1.4063 (19) N1A—C9A 1.2977 (16)
C5A—H5A 0.9500 N1B—C9B 1.2985 (16)
C5B—C4B 1.4100 (19) O1A—H1A 0.91 (2)
C5B—C6B 1.4017 (18) O1A—N1A 1.4141 (14)
C5B—H5B 0.9500 O1B—H1B 0.917 (19)
C6A—C5A 1.4026 (17) O1B—N1B 1.4090 (14)
C1A—C2A—H2A 119.5 C5B—C4B—H4B 120.1
C1A—C6A—H6A 119.9 C5B—C6B—H6B 119.7
C1A—C7A—H7A 116.6 C5B—C6B—C1B 120.60 (11)
C1B—C6B—H6B 119.7 C6A—C5A—C4A 120.52 (11)
C1B—C7B—H7B 116.7 C6A—C5A—H5A 119.7
C1B—C2B—H2B 119.6 C6A—C1A—C7A 122.75 (10)
C2A—C3A—H3A 120.0 C6B—C5B—C4B 120.20 (12)
C2A—C1A—C6A 118.62 (11) C6B—C5B—H5B 119.9
C2A—C1A—C7A 118.62 (11) C6B—C1B—C7B 122.82 (10)
C2B—C3B—C4B 120.13 (11) C7A—C8A—H8A 119.9
C2B—C3B—H3B 119.9 C7A—C8A—C9A 120.18 (11)
C2B—C1B—C6B 118.47 (11) C7B—C8B—C9B 121.15 (12)
C2B—C1B—C7B 118.71 (11) C7B—C8B—H8B 119.4
C3A—C4A—H4A 120.1 C8A—C7A—C1A 126.72 (11)
C3A—C4A—C5A 119.75 (11) C8A—C7A—H7A 116.6
C3A—C2A—H2A 119.5 C8A—C9A—H9A 116.4
C3A—C2A—C1A 120.94 (11) C8B—C9B—H9B 116.8
C3B—C4B—H4B 120.1 C8B—C7B—C1B 126.51 (11)
C3B—C4B—C5B 119.72 (12) C8B—C7B—H7B 116.7
C3B—C2B—C1B 120.87 (12) C9A—C8A—H8A 119.9
C3B—C2B—H2B 119.6 C9A—N1A—O1A 112.58 (9)
C4A—C3A—H3A 120.0 C9B—C8B—H8B 119.4
C4A—C3A—C2A 119.91 (11) C9B—N1B—O1B 112.73 (10)
C4A—C5A—H5A 119.7 N1A—C9A—C8A 127.25 (11)
C4B—C5B—H5B 119.9 N1A—C9A—H9A 116.4
C4B—C3B—H3B 119.9 N1A—O1A—H1A 102.2 (13)
C5A—C4A—H4A 120.1 N1B—C9B—H9B 116.8
C5A—C6A—H6A 119.9 N1B—C9B—C8B 126.41 (12)
C5A—C6A—C1A 120.24 (11) N1B—O1B—H1B 102.2 (12)
C1A—C2A—C3A—C4A −1.0 (2) C6A—C1A—C2A—C3A 1.73 (18)
C1A—C6A—C5A—C4A 0.04 (18) C6B—C5B—C4B—C3B 0.50 (19)
C1A—C7A—C8A—C9A −174.32 (11) C7A—C1A—C2A—C3A −177.00 (11)
C1B—C7B—C8B—C9B −179.24 (11) C7A—C1A—C6A—C5A 177.43 (11)
C1B—C2B—C3B—C4B 0.13 (18) C7B—C8B—C9B—N1B 175.07 (12)
C2A—C1A—C6A—C5A −1.24 (17) C7B—C1B—C6B—C5B 178.75 (12)
C2B—C3B—C4B—C5B −0.73 (19) C8A—C7A—C1A—C2A 165.01 (12)
C2B—C1B—C6B—C5B −0.92 (18) C8A—C7A—C1A—C6A −13.66 (18)
C3B—C2B—C1B—C6B 0.69 (18) C8B—C7B—C1B—C6B −9.56 (19)
C3B—C2B—C1B—C7B −179.00 (11) C8B—C7B—C1B—C2B 170.11 (12)
C4B—C5B—C6B—C1B 0.34 (19) N1A—C9A—C8A—C7A 164.78 (12)
C5A—C4A—C3A—C2A −0.2 (2) O1A—N1A—C9A—C8A 3.45 (17)
C6A—C5A—C4A—C3A 0.71 (19) O1B—N1B—C9B—C8B −1.80 (18)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of rings C1A–C6A and C1B–C6B, respectively.

D—H···A D—H H···A D···A D—H···A
O1A—H1A···N1Bi 0.91 (2) 1.85 (2) 2.755 (2) 174 (2)
O1B—H1B···N1Aii 0.92 (2) 1.95 (2) 2.853 (2) 170 (2)
C2A—H2A···Cg1iii 0.95 2.70 3.563 (2) 151
C5B—H5B···Cg2iv 0.95 2.80 3.508 (2) 132
C9B—H9B···Cg2v 0.95 2.82 3.717 (2) 159

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x−1/2, y, −z+3/2; (iii) −x+3/2, y−1/2, z; (iv) −x+1/2, y−1/2, z; (v) −x+1, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5260).

References

  1. Boruah, M. & Konwar, D. (2012). Synth. Commun. 42, 3261–3268.
  2. Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Garton, N., Bailey, N., Bamford, M., Demont, E., Farre-Gutierrez, I., Hutley, G., Bravi, G. & Pickering, P. (2010). Bioorg. Med. Chem. Lett. 20, 1049–1054. [DOI] [PubMed]
  5. Jasem, Y. A., Barkhad, M., Khazali, M. A., Butt, H. P., El-Khwass, N. A., Alazani, M., Hindawi, B., & Thiemann, T. (2014). J. Chem. Res. (S), 38, 80–84.
  6. Kaur, J., Singh, B. & Singal, K. K. (2006). Chem. Heterocycl. Compd. 42, 818–822.
  7. Kitahara, K., Toma, T., Shimokawa, J. & Fukuyama, T. (2008). Org. Lett. 10, 2259–2261. [DOI] [PubMed]
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Mirjafari, A., Mobarrez, N., O’Brien, R. A., Davis, J. H. Jr & Noei, J. (2011). C. R. Chim. 14, 1065–1070.
  10. Narsaiah, A. V. & Nagaiah, K. (2004). Adv. Synth. Catal. 346, 1271–1274.
  11. Patil, U. B., Kumthekar, K. R. & Nagarkar, J. M. (2012). Tetrahedron Lett. 53, 3706–3709.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023853/su5260sup1.cif

e-71-o1063-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023853/su5260Isup2.hkl

e-71-o1063-Isup2.hkl (314.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023853/su5260Isup3.cml

A B . DOI: 10.1107/S2056989015023853/su5260fig1.tif

A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015023853/su5260fig2.tif

A partial view along the a axis of the crystal packing of the title compound. The O—H⋯N hydrogen bonds, and the C—H⋯π contacts between adjacent mol­ecules are shown as dashed lines (see Table 1).

b b . DOI: 10.1107/S2056989015023853/su5260fig3.tif

A view along the b axis of three stacked mol­ecular motifs made of A (blue) and B (green) inter­connected mol­ecules forming chains along the b axis. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1).

CCDC reference: 1441984

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES