Abstract
The molecular geometry of the ionic title compound, C14H17N4 +·I− or DAZOP+·I−, is essentially featureless. Regarding the crystal structure, in addition to the obvious cation–anion Coulombic interactions, the packing is mostly directed by non-covalent interactions involving both ring systems, as well as the iodide anion. It consists of cationic molecules aligned along [101] and disposed in an antiparallel fashion while linked into π-bonded dimeric entities by a stacking contact involving symmetry-related phenyl rings, with a centroid–centroid distance of 3.468 (3) Å and a slippage of 0.951 Å. The dimers are, in addition, sustained by a number of C—H⋯I and I⋯π (I⋯centroid = 3.876 Å) interactions involving the anion. Finally, interdimeric contacts are of the C—H⋯I and C—H⋯π types.
Keywords: crystal structure, [DAZOP+][I−], NLO, dye, π–π interaction, C—H⋯ π interactions, I⋯π interaction
Related literature
For the synthesis of precursors, see: Li et al. (1995 ▸). For spectroscopic properties of the title compound, see: Gonbeau et al. (1999 ▸). For general infomation on non-linear optical materials, see: Coradin et al. (1997 ▸); Mestechkin (2001 ▸); Nunzi et al. (2008 ▸). For general infomation on new photonic materials, see: Yu et al. (2013 ▸). For related structures, see: Cristian et al. (2004 ▸); Evans et al. (2001 ▸); Xu et al. (2012 ▸).
Experimental
Crystal data
C14H17N4 +·I−
M r = 368.21
Monoclinic,
a = 18.0508 (14) Å
b = 7.2790 (5) Å
c = 11.3760 (9) Å
β = 98.929 (7)°
V = 1476.60 (19) Å3
Z = 4
Mo Kα radiation
μ = 2.16 mm−1
T = 296 K
0.14 × 0.08 × 0.03 mm
Data collection
Agilent Xcalibur Sapphire3 Gemini diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2009 ▸) T min = 0.908, T max = 1.000
5694 measured reflections
2591 independent reflections
1642 reflections with I > 2σ(I)
R int = 0.048
Refinement
R[F 2 > 2σ(F 2)] = 0.035
wR(F 2) = 0.065
S = 0.78
2591 reflections
175 parameters
132 restraints
H-atom parameters constrained
Δρmax = 1.00 e Å−3
Δρmin = −0.51 e Å−3
Data collection: CrysAlis PRO (Agilent, 2009 ▸); cell refinement: CrysAlis PRO); data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▸); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015 ▸); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▸); software used to prepare material for publication: WinGX (Farrugia, 2012 ▸).
Supplementary Material
Crystal structure: contains datablock(s) I, shelx. DOI: 10.1107/S2056989015023646/bg2576sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023646/bg2576Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015023646/bg2576Isup3.cml
x y z . DOI: 10.1107/S2056989015023646/bg2576fig1.tif
The molecular structure of (I),showing the atom-labelling scheme as well as the dimer formation. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i): 1 − x, 1 − y, 2 − z.
CCDC reference: 1441443
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
Cg2 is the centroid of the C12–C16/N17 ring.
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1A⋯I1i | 0.96 | 3.09 | 4.042 (6) | 173 |
| C2—H2A⋯I1i | 0.96 | 3.15 | 4.102 (5) | 169 |
| C15—H15A⋯I1ii | 0.93 | 2.99 | 3.907 (5) | 171 |
| C7—H7A⋯Cg2iii | 0.93 | 2.71 | 3.505 (5) | 143 |
Symmetry codes: (i)
; (ii)
; (iii)
.
supplementary crystallographic information
S1. Chemical context
Over the years, the spectroscopic properties of 4-[2-(4-dimethylaminophenyl)azo]-1-methylpyridinium iodide ([DAZOP+][I−]) have been widely studied (Gonbeau et al., 1999). This dye with donor-acceptor character, belongs to the group of the so-called non-linear optical chromophores (NLO-phore) that are able to form J-type aggregates (Coradin et al., 1997; Mestechkin, 2001; Nunzi et al., 2008). The crystal structures of this kind of NLO dyes are a topic of interest in this context and also for studies related to the solvatochromic properties of these dyes in hydrogen-bond-donor (HBD) and hydrogen-bond-acceptor (HBA) solvents. Very recently, new three-dimensional materials based on organic metalorganic frameworks (MOFs) with the capability to encapsulate dyes have been developed. All of these progress are aimed to the new photonic materials and devices design (Yu et al., 2013).
S2. Structural commentary
The title ionic compound [DAZOP+][I−] (I) crystallizes in the monoclinic S·G. P21/c, and presents one single molecule in the asymmetric unit. The molecular geometry, presented in Fig. 1, is essentially featureless.
S3. Supramolecular features
In addition to the obvious cation-anion coulombian interactions, the crystal packing is mostly directed by non covalent interactions involving the ring systems Cg1 (C4->C9) and Cg2 (C12->C16,N17, as well as the Iodine anion.
It consists of cationic molecules aligned along the [101] direction and disposed in an antiparallel fashion while linked into π bonded dimeric entities (Fig. 1) by a stacking contact involving Cg2 and Cg2i [(i): 1 − x,1 − y,2 − z)]), with d(Cg···Cg) = 3.468 (3) Å and a slippage of 0.951 Å. The dimer is in addition sustained by a number of interactions involving I1, viz (a) I···Cg1i, with d(I···Cg)= 3.876 Å, (b) C1—H1A···I1i, with d(H···I) = 3.09 Å, <C—H···I> = 173°, (c) C2—H2A···I1i, with d(H···I) = 3.15 Å, <C—H···I> = 169°. The remaining non-covalent interactions serve to link these dimers with each other, either directly, viz., through a C7—H7···Cg2iii [(iii): 1 − x,1/2 + y,3/2 − z] contact, with d(H···Cg) = 2.71 Å, <C—H···Cg> = 143° or mediated by the external iodine (viz., C15—H15.. I1ii [(ii): x,3/2 − y,-1/2 + z], d(H···I): 2.99 Å; <C—H···I> = 171°).
S4. Database survey
There are in the literature a lot of crystal structures derived from DAZOP but none with iodine as counter ion. The most similar to (I) is the one with CSD code (Allen, 2002) HANKUD (Cristian et al., 2004) which was solved using powder data and contains a molecule of hexafluorophosphate as counter ion. Thus although the molecules are practically the same, the differences between both structures are significant, mainly due to the absence of π–π interactions in HANKUD. Some similar structures of (DAZOP+) coordinated with metalorganic ions can be found in the CSD, viz., IFAHAY (J. S. O. Evans et al., 2001), RARTEL, RARTIP, RARTOV, (Xu et al., 2012), etc.
S5. Synthesis and crystallization
Benzenamine, N,N-dimethyl-4- (4-pyridinylazo)- was obtained as described in the literature (Li et al., 1995). It was then dissolved in acetonitrile and stirred while an excess of methyl iodide was added dropwise. The resultant mixture was refluxed for 3 h. After that, the orange precipitated obtained was further purified by column chromatography (1:4, methanol/ethyl acetate) with a yield of 59%. Single crystals were obtained by slow evaporation from a methanol solution using a Petri dish.
S6. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1
Figures
Fig. 1.

The molecular structure of (I),showing the atom-labelling scheme as well as the dimer formation. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i): 1 − x, 1 − y, 2 − z.
Crystal data
| C14H17N4+·I− | F(000) = 728 |
| Mr = 368.21 | Dx = 1.656 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 18.0508 (14) Å | Cell parameters from 2009 reflections |
| b = 7.2790 (5) Å | θ = 2.3–29.8° |
| c = 11.3760 (9) Å | µ = 2.16 mm−1 |
| β = 98.929 (7)° | T = 296 K |
| V = 1476.60 (19) Å3 | Plate, orange |
| Z = 4 | 0.14 × 0.08 × 0.03 mm |
Data collection
| Agilent Xcalibur Sapphire3 Gemini diffractometer | 2591 independent reflections |
| Radiation source: Enhance (Mo) X-ray Source | 1642 reflections with I > 2σ(I) |
| Detector resolution: 16.0267 pixels mm-1 | Rint = 0.048 |
| ω scans | θmax = 25.0°, θmin = 2.3° |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2009) | h = −21→17 |
| Tmin = 0.908, Tmax = 1.000 | k = −6→8 |
| 5694 measured reflections | l = −13→10 |
Refinement
| Refinement on F2 | 132 restraints |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
| wR(F2) = 0.065 | w = 1/[σ2(Fo2) + (0.0256P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 0.78 | (Δ/σ)max = 0.001 |
| 2591 reflections | Δρmax = 1.00 e Å−3 |
| 175 parameters | Δρmin = −0.51 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.7113 (3) | 0.4360 (7) | 0.9607 (5) | 0.0253 (13) | |
| H1A | 0.7574 | 0.4185 | 1.0140 | 0.038* | |
| H1B | 0.6980 | 0.5639 | 0.9585 | 0.038* | |
| H1C | 0.7173 | 0.3960 | 0.8824 | 0.038* | |
| C2 | 0.6716 (3) | 0.2294 (6) | 1.1152 (5) | 0.0200 (13) | |
| H2A | 0.7244 | 0.2417 | 1.1432 | 0.030* | |
| H2B | 0.6593 | 0.1018 | 1.1030 | 0.030* | |
| H2C | 0.6439 | 0.2796 | 1.1732 | 0.030* | |
| N3 | 0.6522 (2) | 0.3295 (6) | 1.0020 (4) | 0.0184 (9) | |
| C4 | 0.5810 (3) | 0.3369 (6) | 0.9457 (4) | 0.0129 (9) | |
| C5 | 0.5610 (3) | 0.4377 (6) | 0.8383 (4) | 0.0152 (9) | |
| H5A | 0.5978 | 0.5008 | 0.8058 | 0.018* | |
| C6 | 0.5211 (3) | 0.2442 (6) | 0.9920 (5) | 0.0141 (10) | |
| H6A | 0.5316 | 0.1782 | 1.0627 | 0.017* | |
| C7 | 0.4886 (3) | 0.4430 (6) | 0.7824 (4) | 0.0155 (10) | |
| H7A | 0.4773 | 0.5105 | 0.7125 | 0.019* | |
| C8 | 0.4502 (3) | 0.2522 (6) | 0.9340 (5) | 0.0152 (10) | |
| H8A | 0.4127 | 0.1908 | 0.9660 | 0.018* | |
| C9 | 0.4305 (3) | 0.3502 (6) | 0.8265 (4) | 0.0131 (9) | |
| N10 | 0.3607 (2) | 0.3636 (5) | 0.7569 (4) | 0.0180 (9) | |
| N11 | 0.3082 (2) | 0.2693 (5) | 0.7907 (4) | 0.0215 (9) | |
| C12 | 0.2413 (3) | 0.2902 (7) | 0.7100 (4) | 0.0198 (10) | |
| C13 | 0.2268 (3) | 0.4246 (7) | 0.6216 (5) | 0.0219 (11) | |
| H13A | 0.2625 | 0.5145 | 0.6150 | 0.026* | |
| C14 | 0.1827 (3) | 0.1655 (7) | 0.7185 (5) | 0.0220 (11) | |
| H14A | 0.1880 | 0.0799 | 0.7799 | 0.026* | |
| C15 | 0.1614 (3) | 0.4251 (7) | 0.5455 (5) | 0.0211 (11) | |
| H15A | 0.1527 | 0.5167 | 0.4881 | 0.025* | |
| C16 | 0.1185 (3) | 0.1683 (7) | 0.6385 (5) | 0.0226 (10) | |
| H16A | 0.0813 | 0.0819 | 0.6441 | 0.027* | |
| N17 | 0.1081 (2) | 0.2955 (6) | 0.5508 (4) | 0.0184 (8) | |
| C18 | 0.0410 (3) | 0.2872 (7) | 0.4591 (5) | 0.0260 (13) | |
| H18A | 0.0347 | 0.4024 | 0.4178 | 0.039* | |
| H18B | −0.0023 | 0.2629 | 0.4961 | 0.039* | |
| H18C | 0.0469 | 0.1908 | 0.4037 | 0.039* | |
| I1 | 0.10101 (2) | 0.68987 (5) | 0.81084 (3) | 0.02305 (12) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0259 (19) | 0.028 (3) | 0.022 (3) | −0.0084 (19) | 0.004 (2) | 0.003 (2) |
| C2 | 0.018 (3) | 0.021 (3) | 0.0204 (17) | −0.001 (2) | 0.0039 (14) | 0.0044 (16) |
| N3 | 0.0204 (12) | 0.016 (2) | 0.0187 (16) | −0.0011 (11) | 0.0036 (10) | 0.0014 (15) |
| C4 | 0.0196 (12) | 0.009 (2) | 0.0116 (15) | 0.0006 (11) | 0.0060 (10) | −0.0040 (14) |
| C5 | 0.0206 (11) | 0.013 (2) | 0.0132 (15) | 0.0011 (13) | 0.0063 (11) | −0.0014 (15) |
| C6 | 0.0208 (13) | 0.010 (2) | 0.0125 (18) | −0.0006 (11) | 0.0069 (10) | −0.0044 (15) |
| C7 | 0.0208 (11) | 0.012 (2) | 0.015 (2) | 0.0010 (12) | 0.0056 (10) | −0.0012 (17) |
| C8 | 0.0212 (13) | 0.009 (2) | 0.0159 (15) | −0.0013 (13) | 0.0056 (12) | −0.0028 (14) |
| C9 | 0.0213 (11) | 0.005 (2) | 0.0140 (15) | 0.0020 (11) | 0.0076 (11) | −0.0056 (13) |
| N10 | 0.0219 (11) | 0.017 (2) | 0.0161 (17) | 0.0021 (11) | 0.0066 (10) | −0.0039 (14) |
| N11 | 0.0231 (11) | 0.022 (2) | 0.0211 (18) | 0.0007 (11) | 0.0073 (11) | −0.0010 (14) |
| C12 | 0.0221 (12) | 0.0215 (19) | 0.0178 (17) | 0.0026 (12) | 0.0092 (12) | −0.0038 (15) |
| C13 | 0.0215 (18) | 0.024 (2) | 0.0211 (19) | 0.0008 (14) | 0.0074 (14) | −0.0008 (16) |
| C14 | 0.0211 (13) | 0.023 (2) | 0.023 (2) | 0.0027 (14) | 0.0053 (13) | 0.0022 (16) |
| C15 | 0.0223 (16) | 0.019 (2) | 0.023 (2) | 0.0016 (13) | 0.0062 (13) | −0.0021 (16) |
| C16 | 0.0214 (16) | 0.024 (2) | 0.0232 (18) | 0.0021 (14) | 0.0048 (14) | 0.0031 (16) |
| N17 | 0.0208 (15) | 0.0174 (17) | 0.0178 (17) | 0.0030 (13) | 0.0056 (12) | −0.0027 (13) |
| C18 | 0.0255 (18) | 0.027 (3) | 0.024 (2) | −0.0005 (19) | 0.0002 (16) | 0.001 (2) |
| I1 | 0.0222 (2) | 0.0228 (2) | 0.0241 (2) | −0.0007 (2) | 0.00320 (14) | −0.0028 (2) |
Geometric parameters (Å, º)
| C1—N3 | 1.454 (6) | C8—H8A | 0.9300 |
| C1—H1A | 0.9600 | C9—N10 | 1.383 (6) |
| C1—H1B | 0.9600 | N10—N11 | 1.277 (5) |
| C1—H1C | 0.9600 | N11—C12 | 1.408 (6) |
| C2—N3 | 1.474 (6) | C12—C13 | 1.398 (7) |
| C2—H2A | 0.9600 | C12—C14 | 1.408 (7) |
| C2—H2B | 0.9600 | C13—C15 | 1.351 (7) |
| C2—H2C | 0.9600 | C13—H13A | 0.9300 |
| N3—C4 | 1.344 (6) | C14—C16 | 1.358 (7) |
| C4—C5 | 1.423 (7) | C14—H14A | 0.9300 |
| C4—C6 | 1.442 (6) | C15—N17 | 1.355 (6) |
| C5—C7 | 1.361 (6) | C15—H15A | 0.9300 |
| C5—H5A | 0.9300 | C16—N17 | 1.352 (6) |
| C6—C8 | 1.348 (7) | C16—H16A | 0.9300 |
| C6—H6A | 0.9300 | N17—C18 | 1.471 (6) |
| C7—C9 | 1.405 (6) | C18—H18A | 0.9600 |
| C7—H7A | 0.9300 | C18—H18B | 0.9600 |
| C8—C9 | 1.413 (7) | C18—H18C | 0.9600 |
| N3—C1—H1A | 109.5 | N10—C9—C7 | 115.2 (4) |
| N3—C1—H1B | 109.5 | N10—C9—C8 | 128.0 (5) |
| H1A—C1—H1B | 109.5 | C7—C9—C8 | 116.8 (5) |
| N3—C1—H1C | 109.5 | N11—N10—C9 | 116.2 (4) |
| H1A—C1—H1C | 109.5 | N10—N11—C12 | 110.4 (4) |
| H1B—C1—H1C | 109.5 | C13—C12—N11 | 126.2 (5) |
| N3—C2—H2A | 109.5 | C13—C12—C14 | 116.2 (5) |
| N3—C2—H2B | 109.5 | N11—C12—C14 | 117.6 (5) |
| H2A—C2—H2B | 109.5 | C15—C13—C12 | 120.6 (5) |
| N3—C2—H2C | 109.5 | C15—C13—H13A | 119.7 |
| H2A—C2—H2C | 109.5 | C12—C13—H13A | 119.7 |
| H2B—C2—H2C | 109.5 | C16—C14—C12 | 121.1 (5) |
| C4—N3—C1 | 121.2 (4) | C16—C14—H14A | 119.5 |
| C4—N3—C2 | 121.1 (4) | C12—C14—H14A | 119.5 |
| C1—N3—C2 | 117.3 (4) | C13—C15—N17 | 121.7 (5) |
| N3—C4—C5 | 121.8 (4) | C13—C15—H15A | 119.1 |
| N3—C4—C6 | 121.5 (4) | N17—C15—H15A | 119.1 |
| C5—C4—C6 | 116.7 (5) | N17—C16—C14 | 120.7 (5) |
| C7—C5—C4 | 120.9 (5) | N17—C16—H16A | 119.6 |
| C7—C5—H5A | 119.6 | C14—C16—H16A | 119.6 |
| C4—C5—H5A | 119.6 | C16—N17—C15 | 119.4 (5) |
| C8—C6—C4 | 120.7 (5) | C16—N17—C18 | 120.0 (4) |
| C8—C6—H6A | 119.7 | C15—N17—C18 | 120.6 (4) |
| C4—C6—H6A | 119.7 | N17—C18—H18A | 109.5 |
| C5—C7—C9 | 122.4 (5) | N17—C18—H18B | 109.5 |
| C5—C7—H7A | 118.8 | H18A—C18—H18B | 109.5 |
| C9—C7—H7A | 118.8 | N17—C18—H18C | 109.5 |
| C6—C8—C9 | 122.5 (5) | H18A—C18—H18C | 109.5 |
| C6—C8—H8A | 118.7 | H18B—C18—H18C | 109.5 |
| C9—C8—H8A | 118.7 | ||
| C1—N3—C4—C5 | 4.8 (7) | C8—C9—N10—N11 | −3.6 (7) |
| C2—N3—C4—C5 | 178.0 (4) | C9—N10—N11—C12 | −177.8 (4) |
| C1—N3—C4—C6 | −174.6 (4) | N10—N11—C12—C13 | −14.3 (7) |
| C2—N3—C4—C6 | −1.4 (7) | N10—N11—C12—C14 | 166.1 (4) |
| N3—C4—C5—C7 | 179.8 (4) | N11—C12—C13—C15 | 176.8 (5) |
| C6—C4—C5—C7 | −0.8 (7) | C14—C12—C13—C15 | −3.6 (7) |
| N3—C4—C6—C8 | −179.6 (4) | C13—C12—C14—C16 | 5.2 (7) |
| C5—C4—C6—C8 | 1.0 (7) | N11—C12—C14—C16 | −175.2 (5) |
| C4—C5—C7—C9 | −0.3 (7) | C12—C13—C15—N17 | −0.8 (8) |
| C4—C6—C8—C9 | −0.1 (7) | C12—C14—C16—N17 | −2.3 (8) |
| C5—C7—C9—N10 | −177.6 (4) | C14—C16—N17—C15 | −2.2 (7) |
| C5—C7—C9—C8 | 1.1 (7) | C14—C16—N17—C18 | 174.9 (5) |
| C6—C8—C9—N10 | 177.6 (4) | C13—C15—N17—C16 | 3.9 (7) |
| C6—C8—C9—C7 | −0.9 (7) | C13—C15—N17—C18 | −173.3 (5) |
| C7—C9—N10—N11 | 175.0 (4) |
Hydrogen-bond geometry (Å, º)
Cg2 is the centroid of the C12–C16/N17 ring.
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1A···I1i | 0.96 | 3.09 | 4.042 (6) | 173 |
| C2—H2A···I1i | 0.96 | 3.15 | 4.102 (5) | 169 |
| C15—H15A···I1ii | 0.93 | 2.99 | 3.907 (5) | 171 |
| C7—H7A···Cg2iii | 0.93 | 2.71 | 3.505 (5) | 143 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y+1/2, −z+3/2.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2576).
References
- Agilent (2009). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
- Coradin, T., Nakatani, K., Ledoux, I., Zyss, J. & Clément, R. (1997). J. Mater. Chem. 7, 853–854.
- Cristian, L., Sasaki, I., Lacroix, P. G., Donnadieu, B., Asselberghs, I., Clays, K. & Razus, A. C. (2004). Chem. Mater. 16, 3543–3551.
- Evans, J. S. O., Bénard, S., Yu, P. & Clément, R. (2001). Chem. Mater. 13, 3813–3816.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Gonbeau, D., Coradin, T. & Clément, R. (1999). J. Phys. Chem. B, 103, 3545–3551.
- Li, H., Huang, C., Zhou, Y., Zhao, X., Xia, X., Li, T. & Bai, J. (1995). J. Mater. Chem. 5, 1871–1878.
- Mestechkin, M. M. (2001). Opt. Commun. 198, 199–206.
- Nunzi, F., Fantacci, S., DeAngelis, F., Sgamellotti, A., Cariati, E., Ugo, R. & Macchi, P. (2008). J. Phys. Chem. C, 112, 1213–1226.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Xu, L., Chen, H., Sun, X., Gu, P., Ge, J., Li, N., Xu, Q. & Lu, J. (2012). Polyhedron, 35, 7–14.
- Yu, J., Cui, Y., Xu, H., Yang, Y., Wang, Z., Chen, B. & Qian, G. (2013). Nature, 4, 2719, 1–7. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, shelx. DOI: 10.1107/S2056989015023646/bg2576sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023646/bg2576Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015023646/bg2576Isup3.cml
x y z . DOI: 10.1107/S2056989015023646/bg2576fig1.tif
The molecular structure of (I),showing the atom-labelling scheme as well as the dimer formation. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i): 1 − x, 1 − y, 2 − z.
CCDC reference: 1441443
Additional supporting information: crystallographic information; 3D view; checkCIF report
