Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 19;71(Pt 12):o1069–o1070. doi: 10.1107/S2056989015023646

Crystal structure of 4-{2-[4-(di­methyl­amino)­phen­yl]diazen-1-yl}-1-methyl­pyridinium iodide

Katherine Chulvi a, Ana Costero a,*, Luis E Ochando a, Pablo Gaviña a
PMCID: PMC4719983  PMID: 26870502

Abstract

The mol­ecular geometry of the ionic title compound, C14H17N4 +·I or DAZOP+·I, is essentially featureless. Regarding the crystal structure, in addition to the obvious cation–anion Coulombic inter­actions, the packing is mostly directed by non-covalent inter­actions involving both ring systems, as well as the iodide anion. It consists of cationic mol­ecules aligned along [101] and disposed in an anti­parallel fashion while linked into π-bonded dimeric entities by a stacking contact involving symmetry-related phenyl rings, with a centroid–centroid distance of 3.468 (3) Å and a slippage of 0.951 Å. The dimers are, in addition, sustained by a number of C—H⋯I and I⋯π (I⋯centroid = 3.876 Å) inter­actions involving the anion. Finally, inter­dimeric contacts are of the C—H⋯I and C—H⋯π types.

Keywords: crystal structure, [DAZOP+][I], NLO, dye, π–π inter­action, C—H⋯ π inter­actions, I⋯π inter­action

Related literature  

For the synthesis of precursors, see: Li et al. (1995). For spectroscopic properties of the title compound, see: Gonbeau et al. (1999). For general infomation on non-linear optical materials, see: Coradin et al. (1997); Mestechkin (2001); Nunzi et al. (2008). For general infomation on new photonic materials, see: Yu et al. (2013). For related structures, see: Cristian et al. (2004); Evans et al. (2001); Xu et al. (2012).graphic file with name e-71-o1069-scheme1.jpg

Experimental  

Crystal data  

  • C14H17N4 +·I

  • M r = 368.21

  • Monoclinic, Inline graphic

  • a = 18.0508 (14) Å

  • b = 7.2790 (5) Å

  • c = 11.3760 (9) Å

  • β = 98.929 (7)°

  • V = 1476.60 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 296 K

  • 0.14 × 0.08 × 0.03 mm

Data collection  

  • Agilent Xcalibur Sapphire3 Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2009) T min = 0.908, T max = 1.000

  • 5694 measured reflections

  • 2591 independent reflections

  • 1642 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.065

  • S = 0.78

  • 2591 reflections

  • 175 parameters

  • 132 restraints

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis PRO (Agilent, 2009); cell refinement: CrysAlis PRO); data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, shelx. DOI: 10.1107/S2056989015023646/bg2576sup1.cif

e-71-o1069-sup1.cif (267.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023646/bg2576Isup2.hkl

e-71-o1069-Isup2.hkl (207.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023646/bg2576Isup3.cml

x y z . DOI: 10.1107/S2056989015023646/bg2576fig1.tif

The mol­ecular structure of (I),showing the atom-labelling scheme as well as the dimer formation. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i): 1 − x, 1 − y, 2 − z.

CCDC reference: 1441443

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C12–C16/N17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯I1i 0.96 3.09 4.042 (6) 173
C2—H2A⋯I1i 0.96 3.15 4.102 (5) 169
C15—H15A⋯I1ii 0.93 2.99 3.907 (5) 171
C7—H7ACg2iii 0.93 2.71 3.505 (5) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

S1. Chemical context

Over the years, the spectroscopic properties of 4-[2-(4-di­methyl­amino­phenyl)­azo]-1-methyl­pyridinium iodide ([DAZOP+][I]) have been widely studied (Gonbeau et al., 1999). This dye with donor-acceptor character, belongs to the group of the so-called non-linear optical chromophores (NLO-phore) that are able to form J-type aggregates (Coradin et al., 1997; Mestechkin, 2001; Nunzi et al., 2008). The crystal structures of this kind of NLO dyes are a topic of inter­est in this context and also for studies related to the solvatochromic properties of these dyes in hydrogen-bond-donor (HBD) and hydrogen-bond-acceptor (HBA) solvents. Very recently, new three-dimensional materials based on organic metalorganic frameworks (MOFs) with the capability to encapsulate dyes have been developed. All of these progress are aimed to the new photonic materials and devices design (Yu et al., 2013).

S2. Structural commentary

The title ionic compound [DAZOP+][I] (I) crystallizes in the monoclinic S·G. P21/c, and presents one single molecule in the asymmetric unit. The molecular geometry, presented in Fig. 1, is essentially featureless.

S3. Supra­molecular features

In addition to the obvious cation-anion coulombian inter­actions, the crystal packing is mostly directed by non covalent inter­actions involving the ring systems Cg1 (C4->C9) and Cg2 (C12->C16,N17, as well as the Iodine anion.

It consists of cationic molecules aligned along the [101] direction and disposed in an anti­parallel fashion while linked into π bonded dimeric entities (Fig. 1) by a stacking contact involving Cg2 and Cg2i [(i): 1 − x,1 − y,2 − z)]), with d(Cg···Cg) = 3.468 (3) Å and a slippage of 0.951 Å. The dimer is in addition sustained by a number of inter­actions involving I1, viz (a) I···Cg1i, with d(I···Cg)= 3.876 Å, (b) C1—H1A···I1i, with d(H···I) = 3.09 Å, <C—H···I> = 173°, (c) C2—H2A···I1i, with d(H···I) = 3.15 Å, <C—H···I> = 169°. The remaining non-covalent inter­actions serve to link these dimers with each other, either directly, viz., through a C7—H7···Cg2iii [(iii): 1 − x,1/2 + y,3/2 − z] contact, with d(H···Cg) = 2.71 Å, <C—H···Cg> = 143° or mediated by the external iodine (viz., C15—H15.. I1ii [(ii): x,3/2 − y,-1/2 + z], d(H···I): 2.99 Å; <C—H···I> = 171°).

S4. Database survey

There are in the literature a lot of crystal structures derived from DAZOP but none with iodine as counter ion. The most similar to (I) is the one with CSD code (Allen, 2002) HANKUD (Cristian et al., 2004) which was solved using powder data and contains a molecule of hexa­fluoro­phosphate as counter ion. Thus although the molecules are practically the same, the differences between both structures are significant, mainly due to the absence of π–π inter­actions in HANKUD. Some similar structures of (DAZOP+) coordinated with metalorganic ions can be found in the CSD, viz., IFAHAY (J. S. O. Evans et al., 2001), RARTEL, RARTIP, RARTOV, (Xu et al., 2012), etc.

S5. Synthesis and crystallization

Benzenamine, N,N-di­methyl-4- (4-pyridinylazo)- was obtained as described in the literature (Li et al., 1995). It was then dissolved in aceto­nitrile and stirred while an excess of methyl iodide was added dropwise. The resultant mixture was refluxed for 3 h. After that, the orange precipitated obtained was further purified by column chromatography (1:4, methanol/ethyl acetate) with a yield of 59%. Single crystals were obtained by slow evaporation from a methanol solution using a Petri dish.

S6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I),showing the atom-labelling scheme as well as the dimer formation. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i): 1 − x, 1 − y, 2 − z.

Crystal data

C14H17N4+·I F(000) = 728
Mr = 368.21 Dx = 1.656 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 18.0508 (14) Å Cell parameters from 2009 reflections
b = 7.2790 (5) Å θ = 2.3–29.8°
c = 11.3760 (9) Å µ = 2.16 mm1
β = 98.929 (7)° T = 296 K
V = 1476.60 (19) Å3 Plate, orange
Z = 4 0.14 × 0.08 × 0.03 mm

Data collection

Agilent Xcalibur Sapphire3 Gemini diffractometer 2591 independent reflections
Radiation source: Enhance (Mo) X-ray Source 1642 reflections with I > 2σ(I)
Detector resolution: 16.0267 pixels mm-1 Rint = 0.048
ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2009) h = −21→17
Tmin = 0.908, Tmax = 1.000 k = −6→8
5694 measured reflections l = −13→10

Refinement

Refinement on F2 132 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0256P)2] where P = (Fo2 + 2Fc2)/3
S = 0.78 (Δ/σ)max = 0.001
2591 reflections Δρmax = 1.00 e Å3
175 parameters Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7113 (3) 0.4360 (7) 0.9607 (5) 0.0253 (13)
H1A 0.7574 0.4185 1.0140 0.038*
H1B 0.6980 0.5639 0.9585 0.038*
H1C 0.7173 0.3960 0.8824 0.038*
C2 0.6716 (3) 0.2294 (6) 1.1152 (5) 0.0200 (13)
H2A 0.7244 0.2417 1.1432 0.030*
H2B 0.6593 0.1018 1.1030 0.030*
H2C 0.6439 0.2796 1.1732 0.030*
N3 0.6522 (2) 0.3295 (6) 1.0020 (4) 0.0184 (9)
C4 0.5810 (3) 0.3369 (6) 0.9457 (4) 0.0129 (9)
C5 0.5610 (3) 0.4377 (6) 0.8383 (4) 0.0152 (9)
H5A 0.5978 0.5008 0.8058 0.018*
C6 0.5211 (3) 0.2442 (6) 0.9920 (5) 0.0141 (10)
H6A 0.5316 0.1782 1.0627 0.017*
C7 0.4886 (3) 0.4430 (6) 0.7824 (4) 0.0155 (10)
H7A 0.4773 0.5105 0.7125 0.019*
C8 0.4502 (3) 0.2522 (6) 0.9340 (5) 0.0152 (10)
H8A 0.4127 0.1908 0.9660 0.018*
C9 0.4305 (3) 0.3502 (6) 0.8265 (4) 0.0131 (9)
N10 0.3607 (2) 0.3636 (5) 0.7569 (4) 0.0180 (9)
N11 0.3082 (2) 0.2693 (5) 0.7907 (4) 0.0215 (9)
C12 0.2413 (3) 0.2902 (7) 0.7100 (4) 0.0198 (10)
C13 0.2268 (3) 0.4246 (7) 0.6216 (5) 0.0219 (11)
H13A 0.2625 0.5145 0.6150 0.026*
C14 0.1827 (3) 0.1655 (7) 0.7185 (5) 0.0220 (11)
H14A 0.1880 0.0799 0.7799 0.026*
C15 0.1614 (3) 0.4251 (7) 0.5455 (5) 0.0211 (11)
H15A 0.1527 0.5167 0.4881 0.025*
C16 0.1185 (3) 0.1683 (7) 0.6385 (5) 0.0226 (10)
H16A 0.0813 0.0819 0.6441 0.027*
N17 0.1081 (2) 0.2955 (6) 0.5508 (4) 0.0184 (8)
C18 0.0410 (3) 0.2872 (7) 0.4591 (5) 0.0260 (13)
H18A 0.0347 0.4024 0.4178 0.039*
H18B −0.0023 0.2629 0.4961 0.039*
H18C 0.0469 0.1908 0.4037 0.039*
I1 0.10101 (2) 0.68987 (5) 0.81084 (3) 0.02305 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0259 (19) 0.028 (3) 0.022 (3) −0.0084 (19) 0.004 (2) 0.003 (2)
C2 0.018 (3) 0.021 (3) 0.0204 (17) −0.001 (2) 0.0039 (14) 0.0044 (16)
N3 0.0204 (12) 0.016 (2) 0.0187 (16) −0.0011 (11) 0.0036 (10) 0.0014 (15)
C4 0.0196 (12) 0.009 (2) 0.0116 (15) 0.0006 (11) 0.0060 (10) −0.0040 (14)
C5 0.0206 (11) 0.013 (2) 0.0132 (15) 0.0011 (13) 0.0063 (11) −0.0014 (15)
C6 0.0208 (13) 0.010 (2) 0.0125 (18) −0.0006 (11) 0.0069 (10) −0.0044 (15)
C7 0.0208 (11) 0.012 (2) 0.015 (2) 0.0010 (12) 0.0056 (10) −0.0012 (17)
C8 0.0212 (13) 0.009 (2) 0.0159 (15) −0.0013 (13) 0.0056 (12) −0.0028 (14)
C9 0.0213 (11) 0.005 (2) 0.0140 (15) 0.0020 (11) 0.0076 (11) −0.0056 (13)
N10 0.0219 (11) 0.017 (2) 0.0161 (17) 0.0021 (11) 0.0066 (10) −0.0039 (14)
N11 0.0231 (11) 0.022 (2) 0.0211 (18) 0.0007 (11) 0.0073 (11) −0.0010 (14)
C12 0.0221 (12) 0.0215 (19) 0.0178 (17) 0.0026 (12) 0.0092 (12) −0.0038 (15)
C13 0.0215 (18) 0.024 (2) 0.0211 (19) 0.0008 (14) 0.0074 (14) −0.0008 (16)
C14 0.0211 (13) 0.023 (2) 0.023 (2) 0.0027 (14) 0.0053 (13) 0.0022 (16)
C15 0.0223 (16) 0.019 (2) 0.023 (2) 0.0016 (13) 0.0062 (13) −0.0021 (16)
C16 0.0214 (16) 0.024 (2) 0.0232 (18) 0.0021 (14) 0.0048 (14) 0.0031 (16)
N17 0.0208 (15) 0.0174 (17) 0.0178 (17) 0.0030 (13) 0.0056 (12) −0.0027 (13)
C18 0.0255 (18) 0.027 (3) 0.024 (2) −0.0005 (19) 0.0002 (16) 0.001 (2)
I1 0.0222 (2) 0.0228 (2) 0.0241 (2) −0.0007 (2) 0.00320 (14) −0.0028 (2)

Geometric parameters (Å, º)

C1—N3 1.454 (6) C8—H8A 0.9300
C1—H1A 0.9600 C9—N10 1.383 (6)
C1—H1B 0.9600 N10—N11 1.277 (5)
C1—H1C 0.9600 N11—C12 1.408 (6)
C2—N3 1.474 (6) C12—C13 1.398 (7)
C2—H2A 0.9600 C12—C14 1.408 (7)
C2—H2B 0.9600 C13—C15 1.351 (7)
C2—H2C 0.9600 C13—H13A 0.9300
N3—C4 1.344 (6) C14—C16 1.358 (7)
C4—C5 1.423 (7) C14—H14A 0.9300
C4—C6 1.442 (6) C15—N17 1.355 (6)
C5—C7 1.361 (6) C15—H15A 0.9300
C5—H5A 0.9300 C16—N17 1.352 (6)
C6—C8 1.348 (7) C16—H16A 0.9300
C6—H6A 0.9300 N17—C18 1.471 (6)
C7—C9 1.405 (6) C18—H18A 0.9600
C7—H7A 0.9300 C18—H18B 0.9600
C8—C9 1.413 (7) C18—H18C 0.9600
N3—C1—H1A 109.5 N10—C9—C7 115.2 (4)
N3—C1—H1B 109.5 N10—C9—C8 128.0 (5)
H1A—C1—H1B 109.5 C7—C9—C8 116.8 (5)
N3—C1—H1C 109.5 N11—N10—C9 116.2 (4)
H1A—C1—H1C 109.5 N10—N11—C12 110.4 (4)
H1B—C1—H1C 109.5 C13—C12—N11 126.2 (5)
N3—C2—H2A 109.5 C13—C12—C14 116.2 (5)
N3—C2—H2B 109.5 N11—C12—C14 117.6 (5)
H2A—C2—H2B 109.5 C15—C13—C12 120.6 (5)
N3—C2—H2C 109.5 C15—C13—H13A 119.7
H2A—C2—H2C 109.5 C12—C13—H13A 119.7
H2B—C2—H2C 109.5 C16—C14—C12 121.1 (5)
C4—N3—C1 121.2 (4) C16—C14—H14A 119.5
C4—N3—C2 121.1 (4) C12—C14—H14A 119.5
C1—N3—C2 117.3 (4) C13—C15—N17 121.7 (5)
N3—C4—C5 121.8 (4) C13—C15—H15A 119.1
N3—C4—C6 121.5 (4) N17—C15—H15A 119.1
C5—C4—C6 116.7 (5) N17—C16—C14 120.7 (5)
C7—C5—C4 120.9 (5) N17—C16—H16A 119.6
C7—C5—H5A 119.6 C14—C16—H16A 119.6
C4—C5—H5A 119.6 C16—N17—C15 119.4 (5)
C8—C6—C4 120.7 (5) C16—N17—C18 120.0 (4)
C8—C6—H6A 119.7 C15—N17—C18 120.6 (4)
C4—C6—H6A 119.7 N17—C18—H18A 109.5
C5—C7—C9 122.4 (5) N17—C18—H18B 109.5
C5—C7—H7A 118.8 H18A—C18—H18B 109.5
C9—C7—H7A 118.8 N17—C18—H18C 109.5
C6—C8—C9 122.5 (5) H18A—C18—H18C 109.5
C6—C8—H8A 118.7 H18B—C18—H18C 109.5
C9—C8—H8A 118.7
C1—N3—C4—C5 4.8 (7) C8—C9—N10—N11 −3.6 (7)
C2—N3—C4—C5 178.0 (4) C9—N10—N11—C12 −177.8 (4)
C1—N3—C4—C6 −174.6 (4) N10—N11—C12—C13 −14.3 (7)
C2—N3—C4—C6 −1.4 (7) N10—N11—C12—C14 166.1 (4)
N3—C4—C5—C7 179.8 (4) N11—C12—C13—C15 176.8 (5)
C6—C4—C5—C7 −0.8 (7) C14—C12—C13—C15 −3.6 (7)
N3—C4—C6—C8 −179.6 (4) C13—C12—C14—C16 5.2 (7)
C5—C4—C6—C8 1.0 (7) N11—C12—C14—C16 −175.2 (5)
C4—C5—C7—C9 −0.3 (7) C12—C13—C15—N17 −0.8 (8)
C4—C6—C8—C9 −0.1 (7) C12—C14—C16—N17 −2.3 (8)
C5—C7—C9—N10 −177.6 (4) C14—C16—N17—C15 −2.2 (7)
C5—C7—C9—C8 1.1 (7) C14—C16—N17—C18 174.9 (5)
C6—C8—C9—N10 177.6 (4) C13—C15—N17—C16 3.9 (7)
C6—C8—C9—C7 −0.9 (7) C13—C15—N17—C18 −173.3 (5)
C7—C9—N10—N11 175.0 (4)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C12–C16/N17 ring.

D—H···A D—H H···A D···A D—H···A
C1—H1A···I1i 0.96 3.09 4.042 (6) 173
C2—H2A···I1i 0.96 3.15 4.102 (5) 169
C15—H15A···I1ii 0.93 2.99 3.907 (5) 171
C7—H7A···Cg2iii 0.93 2.71 3.505 (5) 143

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2576).

References

  1. Agilent (2009). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Coradin, T., Nakatani, K., Ledoux, I., Zyss, J. & Clément, R. (1997). J. Mater. Chem. 7, 853–854.
  3. Cristian, L., Sasaki, I., Lacroix, P. G., Donnadieu, B., Asselberghs, I., Clays, K. & Razus, A. C. (2004). Chem. Mater. 16, 3543–3551.
  4. Evans, J. S. O., Bénard, S., Yu, P. & Clément, R. (2001). Chem. Mater. 13, 3813–3816.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Gonbeau, D., Coradin, T. & Clément, R. (1999). J. Phys. Chem. B, 103, 3545–3551.
  7. Li, H., Huang, C., Zhou, Y., Zhao, X., Xia, X., Li, T. & Bai, J. (1995). J. Mater. Chem. 5, 1871–1878.
  8. Mestechkin, M. M. (2001). Opt. Commun. 198, 199–206.
  9. Nunzi, F., Fantacci, S., DeAngelis, F., Sgamellotti, A., Cariati, E., Ugo, R. & Macchi, P. (2008). J. Phys. Chem. C, 112, 1213–1226.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Xu, L., Chen, H., Sun, X., Gu, P., Ge, J., Li, N., Xu, Q. & Lu, J. (2012). Polyhedron, 35, 7–14.
  13. Yu, J., Cui, Y., Xu, H., Yang, Y., Wang, Z., Chen, B. & Qian, G. (2013). Nature, 4, 2719, 1–7. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, shelx. DOI: 10.1107/S2056989015023646/bg2576sup1.cif

e-71-o1069-sup1.cif (267.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023646/bg2576Isup2.hkl

e-71-o1069-Isup2.hkl (207.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023646/bg2576Isup3.cml

x y z . DOI: 10.1107/S2056989015023646/bg2576fig1.tif

The mol­ecular structure of (I),showing the atom-labelling scheme as well as the dimer formation. Displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i): 1 − x, 1 − y, 2 − z.

CCDC reference: 1441443

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES