Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 19;71(Pt 12):o1073–o1074. doi: 10.1107/S2056989015024020

Crystal structure of 4,6-di­chloro-5-methyl­pyrimidine

Meriem Medjani a,*, Noudjoud Hamdouni a, Ouarda Brihi a, Ali Boudjada a, Jean Meinnel b
PMCID: PMC4719985  PMID: 26870504

Abstract

The title compound, C5H4Cl2N2, is essentially planar with an r.m.s. deviation for all non-H atoms of 0.009 Å. The largest deviation from the mean plane is 0.016 (4) Å for an N atom. In the crystal, mol­ecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers, enclosing an R 2 2(6) ring motif.

Keywords: crystal structure, pyrimidine, inversion dimers, C—H⋯N hydrogen bonding

Related literature  

For the applications of pyrimidine derivatives as pesticides and pharmaceutical agents, see: Condon et al. (1993); as agrochemicals, see: Maeno et al. (1990); as anti­viral agents, see: Gilchrist (1997); as herbicides, see: Selby et al. (2002); Zhu et al. (2007); and for applications of organoselenide compounds, see: Ip et al. (1997). For the crystal structure of 5-methyl­pyrimidine, see: Furberg et al. (1979).graphic file with name e-71-o1073-scheme1.jpg

Experimental  

Crystal data  

  • C5H4Cl2N2

  • M r = 163.00

  • Monoclinic, Inline graphic

  • a = 7.463 (5) Å

  • b = 7.827 (5) Å

  • c = 11.790 (5) Å

  • β = 93.233 (5)°

  • V = 687.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.11 × 0.10 × 0.08 mm

Data collection  

  • Oxford Diffraction Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2013) T min = 0.922, T max = 0.934

  • 2347 measured reflections

  • 1228 independent reflections

  • 791 reflections with I > 2σ(I)

  • R int = 0.099

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.173

  • S = 1.01

  • 1228 reflections

  • 83 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/6 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015024020/su5261sup1.cif

e-71-o1073-sup1.cif (137.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024020/su5261Isup2.hkl

e-71-o1073-Isup2.hkl (99.7KB, hkl)

. DOI: 10.1107/S2056989015024020/su5261fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids drawn at the 50% probability level.

b . DOI: 10.1107/S2056989015024020/su5261fig2.tif

The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1).

CCDC reference: 1442378

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N3i 0.93 2.66 3.468 (6) 146

Symmetry code: (i) Inline graphic.

Acknowledgments

This work is supported by the Laboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, Algeria, and the UMR 6226 CNRS-Université Rennes 1 ‘Sciences Chimiques de Rennes’, France. We would also like to thank Mr F. Saidi, Engineer at the Université Mentouri-Constantine, for assistance with the data collection.

supplementary crystallographic information

S1. Comments

Pyrimidines have inter­esting biological properties with applications as pesticides, pharmaceutical agents (Condon et al., 1993; Maeno et al., 1990) and are also inter­esting from a biochemical pint of view and applications of organoselenide compounds (Ip et al., 1997). Pyrimidine derivatives have been developed as anti­viral agents, such as AZT, which is the anti-AIDS drug most widely used (Gilchrist, 1997). Recently, a new series of highly substituted pyrimidine herbicides have been reported (Selby et al., 2002; Zhu et al., 2007). In the present study, we were inter­ested in examining a derivative of pyrimidine with a methyl substituent surrounded by two chlorine atoms.

The molecular structure of the title compound is shown in Fig. 1. The molecule is planar, as is typical in benzenes substituted by halogen atoms and methyl groups, with an r.m.s. deviation for all non-H atoms of 0.009 Å. The largest deviation from the mean plane is 0.016 (4) Å for atom N3. The bond distances and bond angles in the molecule are similar to those reported for 5-methyl­pyrimidine (Furberg et al., 1979).

In the crystal, molecules are linked by a pair of C—H···N hydrogen bonds forming inversion dimers (Table 1 and Fig. 2), enclosing an R22(6) ring motif.

S2. Synthesis and crystallization

The commercially available title compound (Sigma-Aldrich) was recrystallized from ethanol giving colourless prismatic crystals.

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. A l l H atoms were localized in a difference Fourier map but introduced in calculated positions and treated as riding: C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-methyl) and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1).

Crystal data

C5H4Cl2N2 F(000) = 328
Mr = 163.00 Dx = 1.575 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.463 (5) Å Cell parameters from 776 reflections
b = 7.827 (5) Å θ = 4.2–27.8°
c = 11.790 (5) Å µ = 0.85 mm1
β = 93.233 (5)° T = 293 K
V = 687.6 (7) Å3 Prism, colourless
Z = 4 0.11 × 0.10 × 0.08 mm

Data collection

Oxford Diffraction Xcalibur, Eos diffractometer 1228 independent reflections
Radiation source: Enhance (Mo) X-ray Source 791 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.099
CCD rotation images, thin slices ω scans θmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2013) h = −8→8
Tmin = 0.922, Tmax = 0.934 k = −9→4
2347 measured reflections l = −14→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0729P)2] where P = (Fo2 + 2Fc2)/3
1228 reflections (Δ/σ)max < 0.001
83 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl14 0.47393 (16) 0.21816 (17) 0.57181 (8) 0.0686 (5)
Cl16 0.45631 (17) 0.4430 (2) 0.13763 (9) 0.0853 (6)
N1 0.2066 (5) 0.4832 (6) 0.2775 (3) 0.0604 (11)
N3 0.2153 (5) 0.3882 (5) 0.4695 (3) 0.0579 (10)
C2 0.1383 (6) 0.4657 (7) 0.3784 (4) 0.0661 (14)
H2 0.0251 0.5123 0.3865 0.079*
C4 0.3744 (5) 0.3225 (5) 0.4544 (3) 0.0458 (10)
C5 0.4659 (5) 0.3309 (6) 0.3546 (3) 0.0458 (10)
C6 0.3650 (6) 0.4175 (6) 0.2685 (3) 0.0514 (11)
C51 0.6464 (6) 0.2553 (7) 0.3426 (4) 0.0666 (14)
H51A 0.7041 0.3121 0.2823 0.100*
H51B 0.6344 0.1359 0.3252 0.100*
H51C 0.7175 0.2692 0.4124 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl14 0.0846 (9) 0.0601 (9) 0.0604 (6) −0.0009 (7) −0.0019 (6) 0.0089 (5)
Cl16 0.0934 (11) 0.1053 (14) 0.0592 (7) −0.0109 (9) 0.0219 (6) 0.0116 (6)
N1 0.057 (2) 0.061 (3) 0.063 (2) 0.005 (2) 0.0033 (16) 0.0012 (19)
N3 0.057 (2) 0.057 (3) 0.0602 (19) 0.000 (2) 0.0160 (15) −0.0040 (17)
C2 0.050 (2) 0.074 (4) 0.075 (3) 0.008 (3) 0.005 (2) −0.008 (3)
C4 0.045 (2) 0.039 (3) 0.0537 (19) −0.003 (2) 0.0041 (16) −0.0034 (18)
C5 0.042 (2) 0.039 (3) 0.057 (2) −0.005 (2) 0.0089 (16) −0.0056 (17)
C6 0.054 (2) 0.053 (3) 0.0475 (18) −0.004 (2) 0.0070 (16) −0.0023 (18)
C51 0.051 (3) 0.070 (4) 0.081 (3) 0.007 (3) 0.016 (2) −0.002 (2)

Geometric parameters (Å, º)

Cl14—C4 1.737 (4) C4—C5 1.395 (5)
Cl16—C6 1.733 (4) C5—C6 1.403 (6)
N1—C6 1.299 (6) C5—C51 1.486 (6)
N1—C2 1.327 (5) C51—H51A 0.9600
N3—C4 1.315 (5) C51—H51B 0.9600
N3—C2 1.335 (5) C51—H51C 0.9600
C2—H2 0.9300
C6—N1—C2 115.4 (3) C6—C5—C51 125.2 (4)
C4—N3—C2 114.8 (3) N1—C6—C5 125.9 (3)
N1—C2—N3 126.8 (4) N1—C6—Cl16 115.6 (3)
N1—C2—H2 116.6 C5—C6—Cl16 118.5 (3)
N3—C2—H2 116.6 C5—C51—H51A 109.5
N3—C4—C5 125.7 (4) C5—C51—H51B 109.5
N3—C4—Cl14 115.1 (3) H51A—C51—H51B 109.5
C5—C4—Cl14 119.2 (3) C5—C51—H51C 109.5
C4—C5—C6 111.4 (4) H51A—C51—H51C 109.5
C4—C5—C51 123.4 (4) H51B—C51—H51C 109.5
C6—N1—C2—N3 −0.2 (8) Cl14—C4—C5—C51 −0.2 (6)
C4—N3—C2—N1 −0.7 (8) C2—N1—C6—C5 0.5 (8)
C2—N3—C4—C5 1.3 (7) C2—N1—C6—Cl16 −179.0 (4)
C2—N3—C4—Cl14 −178.9 (4) C4—C5—C6—N1 0.1 (7)
N3—C4—C5—C6 −1.1 (6) C51—C5—C6—N1 179.5 (5)
Cl14—C4—C5—C6 179.2 (3) C4—C5—C6—Cl16 179.6 (3)
N3—C4—C5—C51 179.5 (4) C51—C5—C6—Cl16 −1.0 (7)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2···N3i 0.93 2.66 3.468 (6) 146

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5261).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Condon, M. E., Brady, T. E., Feist, D., Malefyt, T., Marc, P., Quakenbush, L. S., Rodaway, S. J., Shaner, D. L. & Tecle, B. (1993). Brighton Crop Prot. Conf. Weeds, pp. 41–46 Alton, Hampshire, England: BCPC Publications.
  3. Furberg, S., Grøgaard, J. & Smedsrud, B. (1979). Acta Chem. Scand. 33b, 715–724.
  4. Gilchrist, T. L. (1997). Heterocycl. Chem. 3rd ed., pp. 261–276. Singapore: Addison Wesley Longman.
  5. Ip, C., Lisk, D. J., Ganther, H. & Thompson, H. J. (1997). Anticancer Res. 17, 3195–3199. [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Maeno, S., Miura, I., Masuda, K. & Nagata, T. (1990). Brighton Crop Protection Conference on Pests and Diseases, pp. 415–422 Alton, Hampshire, England: BCPC Publications.
  8. Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd., Abingdon, UK.
  9. Selby, T. P., Drumm, J. E., Coats, R. A., Coppo, F. T., Gee, S. K., Hay, J. V., Pasteris, R. J. & Stevenson, T. M. (2002). ACS Symposium Series, Vol. 800, Synthesis and Chemistry of Agrochemicals VI, pp. 74–84. Washington DC: American Chemical Society.
  10. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Zhu, Y.-Q., Zou, X.-M., Li, G.-C., Yao, C.-S. & Yang, H.-Z. (2007). Chin. J. Org. Chem. 27, 753–757.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015024020/su5261sup1.cif

e-71-o1073-sup1.cif (137.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024020/su5261Isup2.hkl

e-71-o1073-Isup2.hkl (99.7KB, hkl)

. DOI: 10.1107/S2056989015024020/su5261fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids drawn at the 50% probability level.

b . DOI: 10.1107/S2056989015024020/su5261fig2.tif

The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1).

CCDC reference: 1442378

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES