Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 24;71(Pt 12):o1075. doi: 10.1107/S2056989015024226

Crystal structure of 3-(di­ethyl­amino)­phenol

James A Golen a, Kyle J McDonald b, David R Manke a,*
PMCID: PMC4719986  PMID: 26870505

Abstract

The title compound, C10H15NO, has two mol­ecules in the asymmetric unit. Each mol­ecule has a near-planar C8NO unit excluding H atoms and the terminal methyl groups on the di­ethyl­amino groups, with mean deviations from planarity of 0.036 and 0.063 Å. In the crystal, hydrogen bonding leads to four-membered O—H⋯O—H⋯O—H·· rings. No π–π inter­actions were observed in the structure.

Keywords: crystal structure, hydrogen bonding, phenols

Related literature  

For the structure of 3-amino­phenol, see: Allen et al. (1997). For the structure of similar 3-amino­phenols, see: Xu et al. (2004); Suchetan et al. (2014). For background, see: McDonald et al. (2015); Mills-Robles et al. (2015); Nguyen et al. (2015).graphic file with name e-71-o1075-scheme1.jpg

Experimental  

Crystal data  

  • C10H15NO

  • M r = 165.23

  • Orthorhombic, Inline graphic

  • a = 14.5166 (17) Å

  • b = 15.9102 (18) Å

  • c = 16.0527 (18) Å

  • V = 3707.6 (7) Å3

  • Z = 16

  • Cu Kα radiation

  • μ = 0.60 mm−1

  • T = 120 K

  • 0.25 × 0.2 × 0.1 mm

Data collection  

  • Bruker D8 Venture CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.679, T max = 0.753

  • 21122 measured reflections

  • 3398 independent reflections

  • 2633 reflections with I > 2σ(I)

  • R int = 0.090

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.107

  • S = 1.02

  • 3398 reflections

  • 228 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015024226/ff2147sup1.cif

e-71-o1075-sup1.cif (663.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024226/ff2147Isup2.hkl

e-71-o1075-Isup2.hkl (271.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024226/ff2147Isup3.cml

. DOI: 10.1107/S2056989015024226/ff2147fig1.tif

Mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

. DOI: 10.1107/S2056989015024226/ff2147fig2.tif

Mol­ecular packing of the title compound with hydrogen bonding shown as dashed lines.

CCDC reference: 1442843

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1A 0.86 (1) 1.92 (1) 2.7445 (16) 160 (2)
O1A—H1A⋯O1i 0.86 (1) 1.91 (1) 2.7599 (16) 170 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

supplementary crystallographic information

S1. Comment

Herein we report the structure of 3-(di­ethyl­amino)­phenol as part of a continuing collaboration between UMass Darmouth and Massasoit Community College to examine the solid state structure of aromatic alcohols (McDonald et al., 2015; Mills-Robles et al., 2015; Nguyen et al., 2015). Hydrogen bonding in the title compound leads to four-membered O1–H1···O1A–H1A···O1–H1·· rings. The molecules with the greatest structural similarity whose solid state structure have been reported all demonstrate hydrogen bonding with different acceptors. The parent 3-amino­phenol (Allen et al., 1997) and 3-(1H-1,2,4-triazol-4-yl)phenol (Xu et al., 2004) both instead demonstrate O–H···N hydrogen bonding. The structure of N-(3-hy­droxy­phenyl)­succinimide possesses O–H···O inter­actions with carbonyl oxygen atoms (Suchetan et al., 2014) rather than phenol only inter­actions.

The molecular structure of the title compound has two molecules in the asymmetric unit. Each molecule has a near planar C8NO unit excluding H atoms and the terminal methyls on the di­ethyl­amino groups (C8, C10 and C8A, C10A). This unit for the molecule containing O1 has a mean deviations from planarity of 0.036 Å and the C8NO unit for molecule containing O1A has a mean deviation from planarity of 0.063 Å. No π-π inter­actions were observed in the structure. The packing for the title compound indicating hydrogen bonding is shown in Figure 2.

S2. Experimental

Crystals suitable for X-ray diffraction studies were selected from a commercial sample (Aldrich).

S3. Refinement

All non-hydrogen atoms were refined anisotropically (XL) by full matrix least squares on F2. Hydrogen atoms H1 and H1A were found from a Fourier difference map, and refined with a fixed distance of 0.86 (0.01) Å and isotropic displacement parameters of 1.50 times Ueq of the parent O atoms. The remaining hydrogen atoms were placed in calculated positions and then refined with a riding model with C–H lengths of 0.95 Å (sp2) and 0.98 Å (sp3) with isotropic displacement parameters set to 1.20 (sp2) and 1.50 (sp3) times Ueq of the parent C atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H15NO F(000) = 1440
Mr = 165.23 Dx = 1.184 Mg m3
Orthorhombic, Pbca Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2ab Cell parameters from 8014 reflections
a = 14.5166 (17) Å θ = 5.0–68.1°
b = 15.9102 (18) Å µ = 0.60 mm1
c = 16.0527 (18) Å T = 120 K
V = 3707.6 (7) Å3 SHARD, colourless
Z = 16 0.25 × 0.2 × 0.1 mm

Data collection

Bruker D8 Venture CMOS diffractometer 3398 independent reflections
Radiation source: Cu 2633 reflections with I > 2σ(I)
HELIOS MX monochromator Rint = 0.090
φ and ω scans θmax = 68.4°, θmin = 5.0°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −17→17
Tmin = 0.679, Tmax = 0.753 k = −18→19
21122 measured reflections l = −11→19

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0402P)2 + 1.2567P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.19 e Å3
3398 reflections Δρmin = −0.20 e Å3
228 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.0024 (2)

Special details

Experimental. Absorption correction: SADABS2014/4 (Bruker,2014/4) was used for absorption correction. wR2(int) was 0.1095 before and 0.0838 after correction. The Ratio of minimum to maximum transmission is 0.9012. The λ/2 correction factor is 0.00150.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.53496 (8) 0.52600 (7) 0.61994 (7) 0.0255 (3)
H1 0.5319 (14) 0.5635 (10) 0.5812 (10) 0.038*
N1 0.82785 (10) 0.66193 (9) 0.66954 (9) 0.0271 (3)
C1 0.61885 (11) 0.53018 (10) 0.66024 (10) 0.0209 (3)
C2 0.68001 (11) 0.59514 (10) 0.64446 (10) 0.0211 (3)
H2 0.6639 0.6379 0.6058 0.025*
C3 0.76619 (12) 0.59821 (9) 0.68541 (10) 0.0214 (4)
C4 0.78585 (12) 0.53347 (10) 0.74327 (10) 0.0234 (4)
H4 0.8423 0.5342 0.7732 0.028*
C5 0.72339 (12) 0.46927 (10) 0.75652 (10) 0.0249 (4)
H5 0.7385 0.4260 0.7950 0.030*
C6 0.63954 (12) 0.46591 (10) 0.71552 (10) 0.0250 (4)
H6 0.5976 0.4211 0.7249 0.030*
C7 0.92033 (12) 0.66198 (11) 0.70474 (11) 0.0281 (4)
H7A 0.9631 0.6884 0.6644 0.034*
H7B 0.9405 0.6031 0.7130 0.034*
C8 0.92687 (14) 0.70839 (12) 0.78718 (12) 0.0367 (5)
H8A 0.9910 0.7089 0.8061 0.055*
H8B 0.8885 0.6800 0.8287 0.055*
H8C 0.9053 0.7663 0.7799 0.055*
C9 0.80758 (12) 0.72813 (10) 0.60980 (11) 0.0275 (4)
H9A 0.8460 0.7778 0.6230 0.033*
H9B 0.7422 0.7448 0.6159 0.033*
C10 0.82475 (13) 0.70291 (11) 0.52001 (11) 0.0323 (4)
H10A 0.8167 0.7520 0.4838 0.048*
H10B 0.7809 0.6590 0.5038 0.048*
H10C 0.8877 0.6814 0.5144 0.048*
O1A 0.50614 (8) 0.61366 (7) 0.47501 (7) 0.0254 (3)
N1A 0.63804 (10) 0.88712 (8) 0.50028 (8) 0.0238 (3)
C1A 0.55769 (11) 0.67627 (9) 0.43824 (10) 0.0196 (3)
H1A 0.4968 (13) 0.5730 (9) 0.4404 (10) 0.029*
C2A 0.57128 (10) 0.74811 (9) 0.48544 (9) 0.0186 (3)
H2A 0.5458 0.7517 0.5398 0.022*
C3A 0.62260 (11) 0.81588 (9) 0.45334 (9) 0.0188 (3)
C4A 0.65707 (11) 0.80848 (10) 0.37146 (10) 0.0214 (4)
H4A 0.6905 0.8536 0.3473 0.026*
C5A 0.64237 (11) 0.73569 (10) 0.32641 (10) 0.0234 (4)
H5A 0.6669 0.7317 0.2717 0.028*
C6A 0.59298 (11) 0.66813 (10) 0.35830 (10) 0.0228 (4)
H6A 0.5837 0.6184 0.3266 0.027*
C7A 0.68674 (12) 0.95955 (10) 0.46599 (11) 0.0249 (4)
H7AA 0.6678 1.0105 0.4969 0.030*
H7AB 0.6681 0.9671 0.4071 0.030*
C8A 0.79083 (12) 0.95156 (11) 0.47007 (11) 0.0303 (4)
H8AA 0.8192 1.0041 0.4512 0.045*
H8AB 0.8109 0.9053 0.4340 0.045*
H8AC 0.8096 0.9401 0.5276 0.045*
C9A 0.61651 (12) 0.89193 (10) 0.58880 (10) 0.0248 (4)
H9AA 0.6664 0.9230 0.6175 0.030*
H9AB 0.6150 0.8343 0.6120 0.030*
C10A 0.52551 (13) 0.93469 (12) 0.60712 (12) 0.0358 (5)
H10D 0.5179 0.9405 0.6675 0.054*
H10E 0.4750 0.9008 0.5846 0.054*
H10F 0.5248 0.9904 0.5812 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0246 (7) 0.0244 (6) 0.0276 (6) −0.0063 (5) −0.0026 (5) 0.0020 (5)
N1 0.0210 (8) 0.0279 (7) 0.0323 (8) −0.0061 (6) −0.0042 (6) 0.0053 (6)
C1 0.0211 (8) 0.0223 (7) 0.0194 (8) −0.0007 (6) 0.0019 (6) −0.0043 (6)
C2 0.0241 (9) 0.0198 (7) 0.0195 (8) −0.0003 (6) 0.0016 (6) 0.0001 (6)
C3 0.0219 (9) 0.0206 (8) 0.0216 (8) 0.0001 (6) 0.0037 (6) −0.0036 (6)
C4 0.0244 (9) 0.0252 (8) 0.0207 (8) 0.0035 (7) −0.0003 (6) −0.0032 (7)
C5 0.0321 (10) 0.0226 (8) 0.0201 (8) 0.0048 (7) 0.0047 (7) 0.0007 (6)
C6 0.0301 (10) 0.0202 (8) 0.0246 (8) −0.0022 (7) 0.0063 (7) 0.0005 (7)
C7 0.0199 (9) 0.0336 (9) 0.0309 (9) −0.0044 (7) 0.0002 (7) 0.0002 (7)
C8 0.0406 (12) 0.0394 (10) 0.0300 (10) −0.0106 (9) −0.0043 (8) −0.0004 (8)
C9 0.0240 (9) 0.0203 (8) 0.0381 (10) −0.0041 (7) −0.0009 (7) 0.0027 (7)
C10 0.0258 (10) 0.0330 (9) 0.0379 (10) −0.0002 (8) 0.0024 (8) 0.0072 (8)
O1A 0.0278 (7) 0.0209 (6) 0.0274 (6) −0.0078 (5) −0.0013 (5) 0.0007 (5)
N1A 0.0287 (8) 0.0206 (7) 0.0222 (7) −0.0052 (6) 0.0038 (6) −0.0041 (5)
C1A 0.0147 (8) 0.0192 (7) 0.0249 (8) −0.0013 (6) −0.0026 (6) 0.0033 (6)
C2A 0.0155 (8) 0.0218 (8) 0.0185 (8) 0.0015 (6) −0.0001 (6) 0.0004 (6)
C3A 0.0160 (8) 0.0192 (7) 0.0211 (8) 0.0004 (6) −0.0022 (6) −0.0006 (6)
C4A 0.0192 (9) 0.0227 (8) 0.0223 (8) −0.0026 (6) 0.0002 (6) 0.0015 (6)
C5A 0.0218 (9) 0.0294 (8) 0.0190 (8) 0.0006 (7) 0.0017 (6) −0.0020 (7)
C6A 0.0222 (9) 0.0220 (8) 0.0243 (8) 0.0010 (6) −0.0034 (7) −0.0055 (6)
C7A 0.0263 (9) 0.0163 (7) 0.0319 (9) −0.0037 (7) 0.0029 (7) −0.0027 (6)
C8A 0.0281 (10) 0.0327 (9) 0.0302 (9) −0.0079 (7) 0.0018 (7) −0.0062 (7)
C9A 0.0271 (10) 0.0269 (8) 0.0202 (8) −0.0015 (7) −0.0025 (7) −0.0050 (6)
C10A 0.0320 (11) 0.0408 (10) 0.0348 (10) 0.0041 (9) 0.0066 (8) −0.0080 (8)

Geometric parameters (Å, º)

O1—H1 0.863 (9) O1A—C1A 1.3786 (19)
O1—C1 1.381 (2) O1A—H1A 0.863 (9)
N1—C3 1.376 (2) N1A—C3A 1.379 (2)
N1—C7 1.457 (2) N1A—C7A 1.460 (2)
N1—C9 1.455 (2) N1A—C9A 1.457 (2)
C1—C2 1.386 (2) C1A—C2A 1.385 (2)
C1—C6 1.387 (2) C1A—C6A 1.388 (2)
C2—H2 0.9500 C2A—H2A 0.9500
C2—C3 1.414 (2) C2A—C3A 1.408 (2)
C3—C4 1.416 (2) C3A—C4A 1.411 (2)
C4—H4 0.9500 C4A—H4A 0.9500
C4—C5 1.382 (2) C4A—C5A 1.382 (2)
C5—H5 0.9500 C5A—H5A 0.9500
C5—C6 1.385 (2) C5A—C6A 1.390 (2)
C6—H6 0.9500 C6A—H6A 0.9500
C7—H7A 0.9900 C7A—H7AA 0.9900
C7—H7B 0.9900 C7A—H7AB 0.9900
C7—C8 1.518 (2) C7A—C8A 1.518 (2)
C8—H8A 0.9800 C8A—H8AA 0.9800
C8—H8B 0.9800 C8A—H8AB 0.9800
C8—H8C 0.9800 C8A—H8AC 0.9800
C9—H9A 0.9900 C9A—H9AA 0.9900
C9—H9B 0.9900 C9A—H9AB 0.9900
C9—C10 1.517 (3) C9A—C10A 1.515 (2)
C10—H10A 0.9800 C10A—H10D 0.9800
C10—H10B 0.9800 C10A—H10E 0.9800
C10—H10C 0.9800 C10A—H10F 0.9800
C1—O1—H1 110.5 (14) C1A—O1A—H1A 110.6 (13)
C3—N1—C7 121.88 (14) C3A—N1A—C7A 121.42 (13)
C3—N1—C9 121.59 (14) C3A—N1A—C9A 122.76 (13)
C9—N1—C7 116.22 (14) C9A—N1A—C7A 115.48 (13)
O1—C1—C2 121.02 (14) O1A—C1A—C2A 116.05 (14)
O1—C1—C6 117.09 (14) O1A—C1A—C6A 121.93 (14)
C2—C1—C6 121.88 (15) C2A—C1A—C6A 122.02 (14)
C1—C2—H2 119.7 C1A—C2A—H2A 119.8
C1—C2—C3 120.50 (15) C1A—C2A—C3A 120.46 (14)
C3—C2—H2 119.7 C3A—C2A—H2A 119.8
N1—C3—C2 120.99 (14) N1A—C3A—C2A 121.02 (14)
N1—C3—C4 121.75 (15) N1A—C3A—C4A 121.31 (14)
C2—C3—C4 117.26 (15) C2A—C3A—C4A 117.67 (14)
C3—C4—H4 119.8 C3A—C4A—H4A 119.9
C5—C4—C3 120.41 (16) C5A—C4A—C3A 120.17 (15)
C5—C4—H4 119.8 C5A—C4A—H4A 119.9
C4—C5—H5 118.9 C4A—C5A—H5A 118.8
C4—C5—C6 122.14 (16) C4A—C5A—C6A 122.35 (15)
C6—C5—H5 118.9 C6A—C5A—H5A 118.8
C1—C6—H6 121.1 C1A—C6A—C5A 117.31 (14)
C5—C6—C1 117.77 (15) C1A—C6A—H6A 121.3
C5—C6—H6 121.1 C5A—C6A—H6A 121.3
N1—C7—H7A 108.9 N1A—C7A—H7AA 108.9
N1—C7—H7B 108.9 N1A—C7A—H7AB 108.9
N1—C7—C8 113.32 (15) N1A—C7A—C8A 113.57 (14)
H7A—C7—H7B 107.7 H7AA—C7A—H7AB 107.7
C8—C7—H7A 108.9 C8A—C7A—H7AA 108.9
C8—C7—H7B 108.9 C8A—C7A—H7AB 108.9
C7—C8—H8A 109.5 C7A—C8A—H8AA 109.5
C7—C8—H8B 109.5 C7A—C8A—H8AB 109.5
C7—C8—H8C 109.5 C7A—C8A—H8AC 109.5
H8A—C8—H8B 109.5 H8AA—C8A—H8AB 109.5
H8A—C8—H8C 109.5 H8AA—C8A—H8AC 109.5
H8B—C8—H8C 109.5 H8AB—C8A—H8AC 109.5
N1—C9—H9A 108.8 N1A—C9A—H9AA 108.9
N1—C9—H9B 108.8 N1A—C9A—H9AB 108.9
N1—C9—C10 113.69 (14) N1A—C9A—C10A 113.58 (15)
H9A—C9—H9B 107.7 H9AA—C9A—H9AB 107.7
C10—C9—H9A 108.8 C10A—C9A—H9AA 108.9
C10—C9—H9B 108.8 C10A—C9A—H9AB 108.9
C9—C10—H10A 109.5 C9A—C10A—H10D 109.5
C9—C10—H10B 109.5 C9A—C10A—H10E 109.5
C9—C10—H10C 109.5 C9A—C10A—H10F 109.5
H10A—C10—H10B 109.5 H10D—C10A—H10E 109.5
H10A—C10—H10C 109.5 H10D—C10A—H10F 109.5
H10B—C10—H10C 109.5 H10E—C10A—H10F 109.5
O1—C1—C2—C3 −179.26 (14) O1A—C1A—C2A—C3A −179.69 (14)
O1—C1—C6—C5 −179.92 (14) O1A—C1A—C6A—C5A 178.67 (14)
N1—C3—C4—C5 −178.55 (15) N1A—C3A—C4A—C5A 178.57 (15)
C1—C2—C3—N1 179.29 (15) C1A—C2A—C3A—N1A −178.81 (15)
C1—C2—C3—C4 −1.0 (2) C1A—C2A—C3A—C4A 1.6 (2)
C2—C1—C6—C5 1.4 (2) C2A—C1A—C6A—C5A −0.6 (2)
C2—C3—C4—C5 1.7 (2) C2A—C3A—C4A—C5A −1.8 (2)
C3—N1—C7—C8 −92.09 (19) C3A—N1A—C7A—C8A −83.25 (19)
C3—N1—C9—C10 −81.0 (2) C3A—N1A—C9A—C10A −98.73 (19)
C3—C4—C5—C6 −1.0 (2) C3A—C4A—C5A—C6A 0.9 (2)
C4—C5—C6—C1 −0.6 (2) C4A—C5A—C6A—C1A 0.3 (2)
C6—C1—C2—C3 −0.6 (2) C6A—C1A—C2A—C3A −0.4 (2)
C7—N1—C3—C2 −173.91 (15) C7A—N1A—C3A—C2A −176.56 (15)
C7—N1—C3—C4 6.4 (2) C7A—N1A—C3A—C4A 3.0 (2)
C7—N1—C9—C10 92.77 (18) C7A—N1A—C9A—C10A 87.86 (18)
C9—N1—C3—C2 −0.5 (2) C9A—N1A—C3A—C2A 10.4 (2)
C9—N1—C3—C4 179.73 (15) C9A—N1A—C3A—C4A −169.98 (15)
C9—N1—C7—C8 94.20 (18) C9A—N1A—C7A—C8A 90.25 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O1A 0.86 (1) 1.92 (1) 2.7445 (16) 160 (2)
O1A—H1A···O1i 0.86 (1) 1.91 (1) 2.7599 (16) 170 (2)

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FF2147).

References

  1. Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480.
  2. Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. McDonald, K. J., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o406. [DOI] [PMC free article] [PubMed]
  5. Mills-Robles, H. A., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o1019. [DOI] [PMC free article] [PubMed]
  6. Nguyen, D. M., Desikan, V., Golen, J. A. & Manke, D. R. (2015). Acta Cryst. E71, o533. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  9. Suchetan, P. A., Naveen, S., Lokanath, N. K. & Sreenivasa, S. (2014). Acta Cryst. E70, o927. [DOI] [PMC free article] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Xu, L., Guo, G.-C., Liu, B., Fu, M.-L. & Huang, J.-S. (2004). Acta Cryst. E60, o1060–o1062.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015024226/ff2147sup1.cif

e-71-o1075-sup1.cif (663.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024226/ff2147Isup2.hkl

e-71-o1075-Isup2.hkl (271.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024226/ff2147Isup3.cml

. DOI: 10.1107/S2056989015024226/ff2147fig1.tif

Mol­ecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.

. DOI: 10.1107/S2056989015024226/ff2147fig2.tif

Mol­ecular packing of the title compound with hydrogen bonding shown as dashed lines.

CCDC reference: 1442843

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES