Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 31;71(Pt 12):o1095–o1096. doi: 10.1107/S2056989015024792

Crystal structure of 1-{3-(4-methyl­phen­yl)-5-[(E)-2-phenyl­ethen­yl]-4,5-di­hydro-1H-pyrazol-1-yl}ethan-1-one

Farook Adam a,*, Kanathur Smitha b, Sharath Poojary Charishma b, Seranthimata Samshuddin b, Nadiah Ameram a
PMCID: PMC4719997  PMID: 26870516

Abstract

The title compound, C20H20N2O, was studied as a part of our work on pyrazoline derivatives. It represents a trans-isomer. The central pyrazoline ring adopts an envelope conformation with the asymmetric C atom having the largest deviation of 0.107 (1) Å from the mean plane. It forms dihedral angles of 6.2 (1) and 86.4 (1)° with the adjacent p-tolyl and styrene groups, respectively. In the crystal, C—H⋯O inter­actions link mol­ecules into infinite chains along the c axis.

Keywords: crystal structure, synthesis, pyrazoline, pharmacological properties

Related literature  

For background to pyrazoles, see: Samshuddin et al. (2012); Wiley et al. (1958); Sarojini et al. (2010); Lu et al.(1999). For crystal structures of pyrazoline-derived chalcones, see: Jasinski et al. (2012); Baktır et al. (2011). For stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-71-o1095-scheme1.jpg

Experimental  

Crystal data  

  • C20H20N2O

  • M r = 304.38

  • Orthorhombic, Inline graphic

  • a = 19.872 (2) Å

  • b = 20.304 (2) Å

  • c = 8.2924 (8) Å

  • V = 3345.9 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.38 × 0.31 × 0.17 mm

Data collection  

  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.914, T max = 0.960

  • 60332 measured reflections

  • 5482 independent reflections

  • 4234 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.146

  • S = 1.04

  • 5482 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015024792/ld2138sup1.cif

e-71-o1095-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024792/ld2138Isup3.hkl

e-71-o1095-Isup3.hkl (436.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024792/ld2138Isup3.cml

. DOI: 10.1107/S2056989015024792/ld2138fig1.tif

The mol­ecular structure of title compound (I) with atom labels and 50% probability displacement ellipsoids.

a . DOI: 10.1107/S2056989015024792/ld2138fig2.tif

The crystal packing of title compound (I) viewed along the a-axis.

CCDC reference: 1444202

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19C⋯O1i 0.98 2.51 3.4416 (18) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

FA would like to thank University Sains Malaysia for the RU research Grant (No. PKIMIA/846017 and 1001/PKIMIA/811269) which partly supported the work. SS thanks to Alva’s Education Foundation, Moodbidri, for the research facilities.

supplementary crystallographic information

S1. Introduction

Pyrazoline derivatives exhibit numerous pharmacological activities including anti­oxidant, anti­amoebic, anti-inflammatory, analgesic, anti­microbial, anti depressant and anti­cancer activities (Sarojini et al., 2010; Samshuddin et al., 2012). Many 1,3,5-tri­aryl-2-pyrazolines were used as scintillation solutes (Wiley et al., 1958) and as fluorescent agents (Lu et al., 1999). The crystal structures of some pyrazolines containing N-alkyl chain viz., 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carbaldehyde (Baktir et al., 2011), 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carboxamide and 3,5-bis­(4-fluoro­phenyl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide (Jasinski et al., 2012) had been reported. In view of the importance of pyrazolines, the title compound (I) is prepared and its crystal structure is reported.

S2. Experimental

A mixture of (2E,4E)-1-(4-methyl­phenyl)-5-phenyl­penta-2,4-dien-1-one (2.48 g, 0.01 mol) and hydrazine hydrate (1 ml) in 30 ml acetic acid was refluxed for 6 h·The reaction mixture was cooled and poured into 100 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol.

S2.1. Synthesis and crystallization

Single crystals were grown from ethanol by slow evaporation method. m.p.: 386–390 K. Yield: 71%.

S2.2. Refinement

All H atoms were placed in calculated positions and refined with riding model [Uiso (H) = 1.2 × Ueq(C methyl­ene or methine) or 1.5 × Ueq (C methyl), C—H = 0.95 Å, 0.98 Å, 0.99 Å and 1.00 Å]. A rotating group model (AFIX 137) is applied to methyl groups.

S3. related literature

For background of pyrazoles, see: Samshuddin et al. (2012); Wiley et al. (1958); Sarojini et al. (2010); Lu et al. (1999). For crystal structures of pyrazoline derived chalcone, see: Jasinski et al. (2012); Baktir et al. (2011). For stability of the temperature controller used for data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

S4. Results and discussion

The asymmetric unit of (I) consists of a single crystallographic independent molecule as shown in Fig. 1. The C6/C7/C8/C9 carbon chains adopts a trans configuration with respect to C7—C8 double bond. The pyrazoline ring (N1/N2/C9/C10/C11) adopts an envelope conformation on atom C9 [Q2 = 0.1772 (12) Å and φ2 = 317.3 (4)°] with maximum deviation of 0.107 (1) Å from its mean plane. The p-tolyl ring and styrene group make dihedral angles of 6.19 (7)° and 86.39 (7)° with central pyrazoline ring. In crystal, molecules are connected by weak C—H···O hydrogen bond into one-dimensional chains (Fig. 2), propagating along crystallographic c-axis.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound (I) with atom labels and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of title compound (I) viewed along the a-axis.

Crystal data

C20H20N2O Dx = 1.208 Mg m3
Mr = 304.38 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pccn Cell parameters from 9875 reflections
a = 19.872 (2) Å θ = 2.8–31.0°
b = 20.304 (2) Å µ = 0.08 mm1
c = 8.2924 (8) Å T = 100 K
V = 3345.9 (6) Å3 Block, colourless
Z = 8 0.38 × 0.31 × 0.17 mm
F(000) = 1296

Data collection

Bruker APEX DUO CCD area-detector diffractometer 5482 independent reflections
Radiation source: fine-focus sealed tube 4234 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
φ and ω scans θmax = 31.4°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −28→28
Tmin = 0.914, Tmax = 0.960 k = −29→29
60332 measured reflections l = −12→12

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0673P)2 + 1.4451P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
5482 reflections Δρmax = 0.37 e Å3
210 parameters Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.07312 (5) 0.73524 (5) 0.64575 (12) 0.0353 (2)
N1 −0.00679 (5) 0.64670 (5) 0.61909 (12) 0.0251 (2)
N2 0.01613 (5) 0.58545 (5) 0.66989 (12) 0.0240 (2)
C1 0.18906 (6) 0.81809 (7) 0.65242 (17) 0.0309 (3)
H1A 0.1938 0.7741 0.6900 0.037*
C2 0.23498 (6) 0.86562 (7) 0.70037 (18) 0.0347 (3)
H2A 0.2707 0.8541 0.7712 0.042*
C3 0.22917 (7) 0.92989 (7) 0.64565 (16) 0.0339 (3)
H3A 0.2610 0.9622 0.6780 0.041*
C4 0.17664 (7) 0.94670 (7) 0.54333 (16) 0.0332 (3)
H4A 0.1724 0.9907 0.5055 0.040*
C5 0.13015 (7) 0.89918 (7) 0.49601 (15) 0.0285 (3)
H5A 0.0942 0.9112 0.4266 0.034*
C6 0.13563 (6) 0.83413 (6) 0.54917 (14) 0.0244 (2)
C7 0.08568 (6) 0.78511 (6) 0.49662 (14) 0.0248 (2)
H7A 0.0522 0.7998 0.4232 0.030*
C8 0.08281 (6) 0.72257 (7) 0.54150 (15) 0.0275 (2)
H8A 0.1151 0.7079 0.6180 0.033*
C9 0.03274 (6) 0.67307 (6) 0.48142 (14) 0.0258 (2)
H9A 0.0029 0.6922 0.3964 0.031*
C10 0.06773 (7) 0.61000 (6) 0.42244 (15) 0.0292 (3)
H10A 0.0456 0.5922 0.3247 0.035*
H10B 0.1159 0.6179 0.3993 0.035*
C11 0.05888 (6) 0.56455 (6) 0.56448 (14) 0.0232 (2)
C12 0.09411 (6) 0.50166 (6) 0.58275 (14) 0.0234 (2)
C13 0.08359 (7) 0.46040 (7) 0.71578 (16) 0.0311 (3)
H13A 0.0527 0.4731 0.7975 0.037*
C14 0.11770 (8) 0.40148 (7) 0.72904 (18) 0.0360 (3)
H14A 0.1093 0.3739 0.8194 0.043*
C15 0.16411 (7) 0.38152 (6) 0.61306 (18) 0.0315 (3)
C16 0.17496 (7) 0.42273 (7) 0.48225 (17) 0.0317 (3)
H16A 0.2068 0.4104 0.4023 0.038*
C17 0.14018 (6) 0.48161 (6) 0.46596 (16) 0.0288 (3)
H17A 0.1479 0.5086 0.3741 0.035*
C18 −0.05635 (6) 0.68098 (6) 0.69553 (15) 0.0276 (2)
C19 −0.08727 (7) 0.64978 (7) 0.84270 (17) 0.0339 (3)
H19A −0.0718 0.6041 0.8519 0.051*
H19B −0.1364 0.6505 0.8330 0.051*
H19C −0.0737 0.6744 0.9390 0.051*
C20 0.20029 (8) 0.31682 (7) 0.6276 (2) 0.0421 (4)
H20A 0.1884 0.2959 0.7303 0.063*
H20B 0.2490 0.3243 0.6237 0.063*
H20C 0.1871 0.2880 0.5383 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0345 (5) 0.0360 (5) 0.0353 (5) 0.0065 (4) −0.0006 (4) 0.0001 (4)
N1 0.0237 (5) 0.0295 (5) 0.0222 (5) −0.0003 (4) 0.0008 (4) 0.0024 (4)
N2 0.0230 (4) 0.0269 (5) 0.0220 (4) −0.0028 (4) −0.0009 (4) 0.0010 (4)
C1 0.0213 (5) 0.0345 (6) 0.0368 (7) 0.0047 (5) −0.0022 (5) −0.0026 (5)
C2 0.0192 (5) 0.0454 (8) 0.0395 (7) 0.0026 (5) −0.0021 (5) −0.0081 (6)
C3 0.0270 (6) 0.0434 (7) 0.0313 (6) −0.0069 (5) 0.0075 (5) −0.0094 (5)
C4 0.0396 (7) 0.0344 (7) 0.0255 (6) −0.0059 (5) 0.0057 (5) −0.0008 (5)
C5 0.0307 (6) 0.0338 (6) 0.0211 (5) 0.0004 (5) 0.0010 (4) 0.0007 (5)
C6 0.0203 (5) 0.0321 (6) 0.0207 (5) 0.0016 (4) 0.0032 (4) −0.0014 (4)
C7 0.0212 (5) 0.0323 (6) 0.0210 (5) 0.0016 (4) −0.0009 (4) 0.0014 (4)
C8 0.0224 (5) 0.0358 (6) 0.0244 (5) −0.0011 (5) −0.0027 (4) 0.0053 (5)
C9 0.0241 (5) 0.0320 (6) 0.0214 (5) −0.0003 (4) 0.0001 (4) 0.0049 (4)
C10 0.0304 (6) 0.0334 (6) 0.0237 (5) 0.0011 (5) 0.0055 (5) 0.0045 (5)
C11 0.0209 (5) 0.0277 (5) 0.0212 (5) −0.0043 (4) −0.0013 (4) 0.0012 (4)
C12 0.0215 (5) 0.0255 (5) 0.0233 (5) −0.0052 (4) −0.0011 (4) 0.0002 (4)
C13 0.0363 (7) 0.0303 (6) 0.0267 (6) −0.0032 (5) 0.0050 (5) 0.0017 (5)
C14 0.0461 (8) 0.0291 (6) 0.0327 (7) −0.0024 (6) 0.0013 (6) 0.0054 (5)
C15 0.0290 (6) 0.0248 (6) 0.0406 (7) −0.0038 (5) −0.0060 (5) −0.0015 (5)
C16 0.0260 (6) 0.0313 (6) 0.0378 (7) −0.0027 (5) 0.0031 (5) −0.0045 (5)
C17 0.0266 (6) 0.0305 (6) 0.0293 (6) −0.0039 (5) 0.0040 (5) 0.0010 (5)
C18 0.0245 (5) 0.0341 (6) 0.0242 (5) −0.0021 (5) −0.0011 (4) −0.0041 (5)
C19 0.0323 (6) 0.0402 (7) 0.0291 (6) −0.0032 (5) 0.0081 (5) −0.0042 (5)
C20 0.0385 (8) 0.0285 (6) 0.0593 (10) 0.0013 (6) −0.0065 (7) 0.0007 (6)

Geometric parameters (Å, º)

O1—C18 1.2228 (16) C10—C11 1.5066 (17)
N1—C18 1.3625 (16) C10—H10A 0.9900
N1—N2 1.3898 (14) C10—H10B 0.9900
N1—C9 1.4855 (15) C11—C12 1.4642 (17)
N2—C11 1.2907 (15) C12—C17 1.3934 (17)
C1—C2 1.3865 (19) C12—C13 1.4008 (17)
C1—C6 1.4023 (17) C13—C14 1.3795 (19)
C1—H1A 0.9500 C13—H13A 0.9500
C2—C3 1.386 (2) C14—C15 1.393 (2)
C2—H2A 0.9500 C14—H14A 0.9500
C3—C4 1.388 (2) C15—C16 1.387 (2)
C3—H3A 0.9500 C15—C20 1.5025 (19)
C4—C5 1.3923 (19) C16—C17 1.3876 (19)
C4—H4A 0.9500 C16—H16A 0.9500
C5—C6 1.3967 (18) C17—H17A 0.9500
C5—H5A 0.9500 C18—C19 1.5061 (18)
C6—C7 1.4717 (17) C19—H19A 0.9800
C7—C8 1.3244 (17) C19—H19B 0.9800
C7—H7A 0.9500 C19—H19C 0.9800
C8—C9 1.4995 (17) C20—H20A 0.9800
C8—H8A 0.9500 C20—H20B 0.9800
C9—C10 1.5370 (18) C20—H20C 0.9800
C9—H9A 1.0000
C18—N1—N2 123.57 (10) C9—C10—H10B 111.4
C18—N1—C9 123.76 (10) H10A—C10—H10B 109.2
N2—N1—C9 112.47 (9) N2—C11—C12 122.10 (11)
C11—N2—N1 107.73 (10) N2—C11—C10 113.89 (11)
C2—C1—C6 120.78 (13) C12—C11—C10 124.00 (10)
C2—C1—H1A 119.6 C17—C12—C13 118.08 (12)
C6—C1—H1A 119.6 C17—C12—C11 119.80 (11)
C3—C2—C1 120.43 (13) C13—C12—C11 122.11 (11)
C3—C2—H2A 119.8 C14—C13—C12 120.53 (13)
C1—C2—H2A 119.8 C14—C13—H13A 119.7
C2—C3—C4 119.62 (13) C12—C13—H13A 119.7
C2—C3—H3A 120.2 C13—C14—C15 121.52 (13)
C4—C3—H3A 120.2 C13—C14—H14A 119.2
C3—C4—C5 120.07 (13) C15—C14—H14A 119.2
C3—C4—H4A 120.0 C16—C15—C14 117.87 (12)
C5—C4—H4A 120.0 C16—C15—C20 121.06 (13)
C4—C5—C6 120.97 (12) C14—C15—C20 121.06 (13)
C4—C5—H5A 119.5 C15—C16—C17 121.24 (12)
C6—C5—H5A 119.5 C15—C16—H16A 119.4
C5—C6—C1 118.13 (12) C17—C16—H16A 119.4
C5—C6—C7 119.57 (11) C16—C17—C12 120.75 (12)
C1—C6—C7 122.29 (12) C16—C17—H17A 119.6
C8—C7—C6 126.46 (11) C12—C17—H17A 119.6
C8—C7—H7A 116.8 O1—C18—N1 120.02 (12)
C6—C7—H7A 116.8 O1—C18—C19 122.77 (12)
C7—C8—C9 125.30 (11) N1—C18—C19 117.19 (12)
C7—C8—H8A 117.3 C18—C19—H19A 109.5
C9—C8—H8A 117.3 C18—C19—H19B 109.5
N1—C9—C8 109.70 (10) H19A—C19—H19B 109.5
N1—C9—C10 100.58 (9) C18—C19—H19C 109.5
C8—C9—C10 111.35 (10) H19A—C19—H19C 109.5
N1—C9—H9A 111.6 H19B—C19—H19C 109.5
C8—C9—H9A 111.6 C15—C20—H20A 109.5
C10—C9—H9A 111.6 C15—C20—H20B 109.5
C11—C10—C9 102.04 (10) H20A—C20—H20B 109.5
C11—C10—H10A 111.4 C15—C20—H20C 109.5
C9—C10—H10A 111.4 H20A—C20—H20C 109.5
C11—C10—H10B 111.4 H20B—C20—H20C 109.5
C18—N1—N2—C11 174.87 (11) N1—N2—C11—C10 −2.35 (14)
C9—N1—N2—C11 −10.15 (13) C9—C10—C11—N2 12.88 (14)
C6—C1—C2—C3 −0.6 (2) C9—C10—C11—C12 −168.09 (11)
C1—C2—C3—C4 0.6 (2) N2—C11—C12—C17 −179.52 (11)
C2—C3—C4—C5 0.0 (2) C10—C11—C12—C17 1.53 (18)
C3—C4—C5—C6 −0.45 (19) N2—C11—C12—C13 −0.05 (18)
C4—C5—C6—C1 0.41 (18) C10—C11—C12—C13 −179.00 (12)
C4—C5—C6—C7 −179.89 (11) C17—C12—C13—C14 −0.50 (19)
C2—C1—C6—C5 0.11 (19) C11—C12—C13—C14 −179.97 (12)
C2—C1—C6—C7 −179.58 (12) C12—C13—C14—C15 1.0 (2)
C5—C6—C7—C8 −177.26 (13) C13—C14—C15—C16 −0.3 (2)
C1—C6—C7—C8 2.4 (2) C13—C14—C15—C20 −179.17 (13)
C6—C7—C8—C9 −177.71 (11) C14—C15—C16—C17 −0.8 (2)
C18—N1—C9—C8 74.84 (14) C20—C15—C16—C17 178.07 (13)
N2—N1—C9—C8 −100.12 (12) C15—C16—C17—C12 1.3 (2)
C18—N1—C9—C10 −167.76 (11) C13—C12—C17—C16 −0.58 (18)
N2—N1—C9—C10 17.27 (12) C11—C12—C17—C16 178.90 (11)
C7—C8—C9—N1 −120.45 (14) N2—N1—C18—O1 178.64 (11)
C7—C8—C9—C10 129.11 (13) C9—N1—C18—O1 4.22 (18)
N1—C9—C10—C11 −16.55 (11) N2—N1—C18—C19 −0.05 (17)
C8—C9—C10—C11 99.63 (11) C9—N1—C18—C19 −174.47 (11)
N1—N2—C11—C12 178.60 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C19—H19C···O1i 0.98 2.51 3.4416 (18) 158

Symmetry code: (i) x, −y+3/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LD2138).

References

  1. Baktır, Z., Akkurt, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1292–o1293. [DOI] [PMC free article] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Jasinski, J. P., Golen, J. A., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2012). Crystals, 2, 1108–1115.
  5. Lu, Z. Y., Zhu, W. G., Jiang, Q. & Xie, M. G. (1999). Chin. Chem. Lett. 10, 679–682.
  6. Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Raj, C. G. D. & Raghavendra, R. (2012). Med. Chem. Res. 21, 2012–2022.
  7. Sarojini, B. K., Vidyagayatri, M., Darshanraj, C. G., Bharath, B. R. & Manjunatha, H. (2010). Lett. Drug. Des. Discov. 7, 214–224.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  11. Wiley, R. H., Jarboe, C. H., Hayes, F. N., Hansbury, E., Nielsen, J. T., Callahan, P. X. & Sellars, M. (1958). J. Org. Chem. 23, 732–738.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015024792/ld2138sup1.cif

e-71-o1095-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024792/ld2138Isup3.hkl

e-71-o1095-Isup3.hkl (436.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024792/ld2138Isup3.cml

. DOI: 10.1107/S2056989015024792/ld2138fig1.tif

The mol­ecular structure of title compound (I) with atom labels and 50% probability displacement ellipsoids.

a . DOI: 10.1107/S2056989015024792/ld2138fig2.tif

The crystal packing of title compound (I) viewed along the a-axis.

CCDC reference: 1444202

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES