Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 31;71(Pt 12):o1097–o1098. doi: 10.1107/S2056989015024779

Crystal structure of 4-methyl-N-{(E)-meth­yl[(3aR,8aS)-2-oxo-3,3a,8,8a-tetra­hydro-2H-indeno­[1,2-d][1,3]oxazol-3-yl]-λ4-sulfanyl­idene}benzene­sulfonamide

Patrícia A Pereira a, Bruce C Noll b, Allen G Oliver c, Gustavo P Silveira a,*
PMCID: PMC4719998  PMID: 26870517

Abstract

The formulation that the title compound, C18H18N2O4S2, adopts is a zwitterionic core with the charge separated to the sulfilimine S and N atoms and is supported by the two different S—N bond distances about the sulfinimine N atom [1.594 (2) and 1.631 (2) Å, respectively] that are typical for such bonds. The notably unusual bond is S—N(oxazolidinone) [1.692 (2) Å] that is longer than a typical S—N bond [1.603 (18) Å, Mogul analysis; Macrae et al. (2008). J. Appl. Cryst. 41, 466–470]. The bond-angle sum about sulfilimine sulfur (308.35°) reflects the trigonal–pyramidal geometry of this atom. Two of the angles are less than 100°. Despite the pyramidalization of this sulfur, there are no significant inter­molecular inter­actions, beyond usual van der Waals contacts, in the crystal packing.

Keywords: oxazolidinone, vinyl sulfonamide, crystal structure

Related literature  

Oxazolidinone sulfilimines are synthesized as precursors of vinyl sulfilimines which are used in the γ-lactamization reaction to generate chiral pyrrolidinones with medicinal chemistry inter­est. For the synthesis, see: Celentano & Colonna (1998); Silveira & Marino (2013). For sulfonyl oxazolidinone structures, see: Barbey et al. (2012); Berredjem et al. (2010); Bonnaud et al. (1987); Dewynter et al. (1997). For related vinyl sulfonamide chemistry, see: Silveira et al. (2013). For related oxazolidinone sulfinime structures, see: Silveira et al. (2012, 2014). For the Hooft parameter, see: Hooft et al. (2008).graphic file with name e-71-o1097-scheme1.jpg

Experimental  

Crystal data  

  • C18H18N2O4S2

  • M r = 390.46

  • Orthorhombic, Inline graphic

  • a = 6.8841 (1) Å

  • b = 12.2326 (2) Å

  • c = 20.1911 (4) Å

  • V = 1700.30 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.09 mm−1

  • T = 100 K

  • 0.42 × 0.40 × 0.34 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Krause et al., 2015) T min = 0.701, T max = 0.929

  • 11963 measured reflections

  • 3004 independent reflections

  • 2984 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.070

  • S = 1.11

  • 3004 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack x determined using 1183 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: 0.052 (4)

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015024779/nk2234sup1.cif

e-71-o1097-sup1.cif (364.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024779/nk2234Isup2.hkl

e-71-o1097-Isup2.hkl (240.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024779/nk2234Isup3.cml

. DOI: 10.1107/S2056989015024779/nk2234fig1.tif

Labeling diagram of the title compound. Atomic displacement ellipsoids depicted at the 50% probability level. Hydrogen atoms depicted as spheres of an arbitrary radius.

CCDC reference: 1444186

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

S1—N2 1.594 (2)
S1—N1 1.692 (2)
S1—C11 1.782 (3)
S2—O4 1.4430 (19)
S2—O3 1.451 (2)
S2—N2 1.631 (2)
S2—C12 1.768 (2)
N2—S1—N1 110.58 (11)
N2—S1—C11 99.43 (12)
N1—S1—C11 98.34 (11)
O4—S2—O3 117.24 (12)
O4—S2—N2 106.79 (12)
O3—S2—N2 112.27 (11)
O4—S2—C12 107.93 (11)
O3—S2—C12 108.03 (12)
N2—S2—C12 103.67 (12)

Acknowledgments

GPS thanks Professor Joseph Marino at Notre Dame for financial support.

supplementary crystallographic information

S1. Commentary

Oxazolidinone sulfilimines are synthesized as precursors of vinyl sulfilimines which are used in the γ-la­cta­mization reaction (Silveira & Marino, 2013) to generate chiral pyrrolidinones with medicinal chemistry inter­est. This compound represents one of only five other oxazolidinone compounds that incorporate an N—S—N backbone (Barbey et al., 2012; Berredjem et al., 2010; Bonnaud et al., 1987; Dewynter et al., 1997). It is the only reported structure that does not have a sulfonyl bridging the oxazolidinone ring to the second nitro­gen atom. Related sulfur-containing oxazolidinones have been reported previously by us (Silveira et al., 2012; 2014). We have also reported a related sulfur-containing indole as a precursor of physostigmine alkaloid·(Silveira et al., 2013).

S2. Synthesis and crystallization

Following literature preparative methods (Celentano et al., 1998; Silveira & Marino, 2013): chloramine-T (951 mg, 4.18 mmol) and hexa­decyl­tri­butyl­phospho­nium bromide (100 mg, 0.20 mmol) were added to a solution of oxazolidinone sulfide (840 mg, 3.80 mmol) in toluene (25 ml) at 295 K. After overnight stirring, ethyl acetate (25 ml) was added and the mixture washed (2 x 30 ml water; 1 x 30 ml brine), dried over anhydrous sodium sulfate, filtered, and the mixture of solvents rota-evaporated at reduced pressure. To the resulting dry, crude product, silica gel (6 g) and methyl­ene chloride (5 ml) were added and this slurry was rota-evaporated to yield the crude product on silica. This mixture was separated and purified through flash chromatography with elution (70% ethyl acetate / 30% hexanes). After slow evaporation of the ethyl acetate / hexanes elutant, the more polar sulfilimine was obtained as white crystals (688 mg). Two sulfilimine diasterioisomers were obtained in a ratio of 2.5:1 (total of 65% yield).

S3. Refinement details

The structure was modeled routinely with all non-hydrogen atoms included with an anistropic model. Hydrogen atoms were included in calculated positions riding on the atom to which they are bonded (C—H = 0.99 Å for methyl, 0.95 Å for methyne and aromatic. Uiso(H) was set = 1.5Ueq(C) for methyl and 1.2Ueq(C) for all others.

The absolute configuration from synthesis was confirmed by comparison of intensities of Friedel pairs of reflections yielding a Flack x parameter = 0.052 (4) (Parsons et al., 2013) and a Hooft y parameter = 0.050 (6) (Hooft et al., 2008).

Figures

Fig. 1.

Fig. 1.

Labeling diagram of the title compound. Atomic displacement ellipsoids depicted at the 50% probability level. Hydrogen atoms depicted as spheres of an arbitrary radius.

Crystal data

C18H18N2O4S2 Dx = 1.525 Mg m3
Mr = 390.46 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121 Cell parameters from 9988 reflections
a = 6.8841 (1) Å θ = 4.2–69.2°
b = 12.2326 (2) Å µ = 3.09 mm1
c = 20.1911 (4) Å T = 100 K
V = 1700.30 (5) Å3 Parallelepiped, clear colorless
Z = 4 0.42 × 0.40 × 0.34 mm
F(000) = 816

Data collection

Bruker SMART APEX CCD diffractometer 3004 independent reflections
Radiation source: fine-focus sealed tube, Siemens KFFCU2K-90 2984 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
Detector resolution: 8.33 pixels mm-1 θmax = 69.5°, θmin = 4.2°
φ and ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −14→14
Tmin = 0.701, Tmax = 0.929 l = −24→22
11963 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.5066P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
3004 reflections Δρmax = 0.29 e Å3
237 parameters Δρmin = −0.36 e Å3
0 restraints Absolute structure: Flack x determined using 1183 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.052 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.45871 (9) 0.55630 (5) 0.77781 (3) 0.00978 (15)
S2 0.67201 (9) 0.69687 (5) 0.85264 (3) 0.01185 (16)
O1 0.3825 (3) 0.25928 (14) 0.82183 (9) 0.0148 (4)
O2 0.6694 (3) 0.34297 (15) 0.80444 (9) 0.0176 (4)
O3 0.8276 (3) 0.63677 (15) 0.82056 (9) 0.0175 (4)
O4 0.6751 (3) 0.81443 (15) 0.84687 (9) 0.0185 (4)
N1 0.3831 (3) 0.44084 (18) 0.81606 (11) 0.0127 (5)
N2 0.4579 (3) 0.65675 (17) 0.82812 (11) 0.0132 (5)
C1 0.4975 (4) 0.3476 (2) 0.81239 (12) 0.0129 (5)
C2 0.1767 (4) 0.2920 (2) 0.82310 (13) 0.0136 (5)
H2 0.1106 0.2809 0.7795 0.016*
C3 0.0725 (4) 0.2347 (2) 0.87983 (13) 0.0148 (6)
H3A −0.0688 0.2299 0.8713 0.018*
H3B 0.1246 0.1601 0.8867 0.018*
C4 0.1142 (4) 0.3068 (2) 0.93859 (13) 0.0124 (5)
C5 0.0916 (4) 0.2842 (2) 1.00541 (13) 0.0140 (6)
H5 0.0423 0.2157 1.0198 0.017*
C6 0.1431 (4) 0.3648 (2) 1.05088 (13) 0.0161 (6)
H6 0.1258 0.3512 1.0968 0.019*
C7 0.2188 (4) 0.4644 (2) 1.03076 (14) 0.0157 (6)
H7 0.2569 0.5170 1.0628 0.019*
C8 0.2393 (4) 0.4875 (2) 0.96324 (14) 0.0141 (5)
H8 0.2899 0.5558 0.9488 0.017*
C9 0.1843 (4) 0.4088 (2) 0.91814 (13) 0.0117 (5)
C10 0.1900 (4) 0.41298 (19) 0.84277 (13) 0.0116 (5)
H10 0.0833 0.4584 0.8234 0.014*
C11 0.2421 (4) 0.5860 (2) 0.73290 (13) 0.0149 (6)
H11A 0.1358 0.5997 0.7641 0.022*
H11B 0.2089 0.5237 0.7046 0.022*
H11C 0.2627 0.6510 0.7054 0.022*
C12 0.6749 (4) 0.6636 (2) 0.93784 (12) 0.0112 (5)
C13 0.6177 (4) 0.7407 (2) 0.98430 (13) 0.0136 (5)
H13 0.5750 0.8110 0.9706 0.016*
C14 0.6237 (4) 0.7138 (2) 1.05134 (13) 0.0153 (6)
H14 0.5858 0.7664 1.0834 0.018*
C15 0.6846 (4) 0.6107 (2) 1.07178 (13) 0.0157 (5)
C16 0.7366 (4) 0.5341 (2) 1.02403 (14) 0.0152 (6)
H16 0.7745 0.4628 1.0376 0.018*
C17 0.7344 (4) 0.5596 (2) 0.95710 (14) 0.0147 (5)
H17 0.7727 0.5071 0.9250 0.018*
C18 0.6940 (5) 0.5854 (2) 1.14496 (14) 0.0231 (6)
H18A 0.7504 0.5126 1.1514 0.035*
H18B 0.5628 0.5871 1.1637 0.035*
H18C 0.7752 0.6400 1.1672 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0116 (3) 0.0111 (3) 0.0066 (3) −0.0007 (2) 0.0007 (2) 0.0007 (2)
S2 0.0124 (3) 0.0139 (3) 0.0093 (3) −0.0022 (2) 0.0002 (2) −0.0003 (2)
O1 0.0189 (10) 0.0105 (8) 0.0151 (9) 0.0019 (7) 0.0014 (7) −0.0003 (7)
O2 0.0161 (9) 0.0186 (9) 0.0179 (9) 0.0046 (8) 0.0011 (8) 0.0004 (8)
O3 0.0116 (9) 0.0269 (10) 0.0140 (9) −0.0032 (8) 0.0015 (8) −0.0017 (8)
O4 0.0251 (10) 0.0161 (9) 0.0143 (9) −0.0067 (8) −0.0028 (8) 0.0036 (7)
N1 0.0141 (11) 0.0108 (10) 0.0133 (10) 0.0016 (9) 0.0039 (9) 0.0032 (9)
N2 0.0135 (11) 0.0141 (10) 0.0118 (10) 0.0004 (9) 0.0001 (9) −0.0013 (9)
C1 0.0170 (14) 0.0137 (12) 0.0080 (12) 0.0023 (10) 0.0010 (10) −0.0015 (10)
C2 0.0157 (13) 0.0129 (12) 0.0121 (12) −0.0016 (11) −0.0025 (11) 0.0014 (10)
C3 0.0173 (14) 0.0137 (12) 0.0134 (13) −0.0036 (10) −0.0014 (11) 0.0008 (11)
C4 0.0116 (11) 0.0133 (12) 0.0121 (12) 0.0020 (10) −0.0014 (10) 0.0006 (11)
C5 0.0109 (12) 0.0164 (13) 0.0149 (13) 0.0002 (10) 0.0010 (10) 0.0059 (10)
C6 0.0122 (13) 0.0256 (14) 0.0106 (12) 0.0041 (11) 0.0015 (10) 0.0017 (11)
C7 0.0107 (13) 0.0218 (13) 0.0145 (13) 0.0024 (10) −0.0001 (10) −0.0054 (11)
C8 0.0114 (12) 0.0135 (12) 0.0174 (13) 0.0023 (10) 0.0033 (10) −0.0010 (11)
C9 0.0090 (11) 0.0148 (12) 0.0111 (12) 0.0030 (10) 0.0025 (11) 0.0023 (10)
C10 0.0112 (12) 0.0120 (12) 0.0117 (12) 0.0003 (9) 0.0010 (11) 0.0030 (9)
C11 0.0168 (13) 0.0158 (12) 0.0122 (13) −0.0026 (10) −0.0057 (10) 0.0050 (10)
C12 0.0087 (11) 0.0168 (12) 0.0080 (11) −0.0023 (10) −0.0023 (10) 0.0024 (9)
C13 0.0106 (12) 0.0158 (12) 0.0142 (13) −0.0013 (10) −0.0004 (10) 0.0011 (11)
C14 0.0116 (12) 0.0215 (13) 0.0127 (12) −0.0028 (10) 0.0013 (10) −0.0013 (10)
C15 0.0111 (12) 0.0223 (13) 0.0136 (13) −0.0054 (11) −0.0024 (11) 0.0031 (11)
C16 0.0107 (12) 0.0156 (12) 0.0192 (13) −0.0008 (10) −0.0024 (10) 0.0050 (11)
C17 0.0103 (12) 0.0158 (12) 0.0180 (13) −0.0003 (10) 0.0015 (10) −0.0028 (11)
C18 0.0263 (16) 0.0287 (15) 0.0144 (13) −0.0091 (12) −0.0016 (13) 0.0049 (11)

Geometric parameters (Å, º)

S1—N2 1.594 (2) C7—C8 1.399 (4)
S1—N1 1.692 (2) C7—H7 0.9500
S1—C11 1.782 (3) C8—C9 1.378 (4)
S2—O4 1.4430 (19) C8—H8 0.9500
S2—O3 1.451 (2) C9—C10 1.523 (3)
S2—N2 1.631 (2) C10—H10 1.0000
S2—C12 1.768 (2) C11—H11A 0.9800
O1—C1 1.353 (3) C11—H11B 0.9800
O1—C2 1.472 (3) C11—H11C 0.9800
O2—C1 1.195 (3) C12—C13 1.387 (4)
N1—C1 1.388 (3) C12—C17 1.392 (4)
N1—C10 1.475 (3) C13—C14 1.394 (4)
C2—C3 1.522 (4) C13—H13 0.9500
C2—C10 1.535 (3) C14—C15 1.391 (4)
C2—H2 1.0000 C14—H14 0.9500
C3—C4 1.506 (4) C15—C16 1.392 (4)
C3—H3A 0.9900 C15—C18 1.511 (4)
C3—H3B 0.9900 C16—C17 1.387 (4)
C4—C5 1.386 (4) C16—H16 0.9500
C4—C9 1.400 (4) C17—H17 0.9500
C5—C6 1.393 (4) C18—H18A 0.9800
C5—H5 0.9500 C18—H18B 0.9800
C6—C7 1.386 (4) C18—H18C 0.9800
C6—H6 0.9500
N2—S1—N1 110.58 (11) C9—C8—H8 120.8
N2—S1—C11 99.43 (12) C7—C8—H8 120.8
N1—S1—C11 98.34 (11) C8—C9—C4 121.5 (2)
O4—S2—O3 117.24 (12) C8—C9—C10 129.0 (2)
O4—S2—N2 106.79 (12) C4—C9—C10 109.5 (2)
O3—S2—N2 112.27 (11) N1—C10—C9 113.4 (2)
O4—S2—C12 107.93 (11) N1—C10—C2 100.5 (2)
O3—S2—C12 108.03 (12) C9—C10—C2 103.0 (2)
N2—S2—C12 103.67 (12) N1—C10—H10 113.0
C1—O1—C2 110.39 (19) C9—C10—H10 113.0
C1—N1—C10 110.0 (2) C2—C10—H10 113.0
C1—N1—S1 119.14 (18) S1—C11—H11A 109.5
C10—N1—S1 129.59 (17) S1—C11—H11B 109.5
S1—N2—S2 114.97 (13) H11A—C11—H11B 109.5
O2—C1—O1 124.1 (2) S1—C11—H11C 109.5
O2—C1—N1 127.5 (2) H11A—C11—H11C 109.5
O1—C1—N1 108.5 (2) H11B—C11—H11C 109.5
O1—C2—C3 110.0 (2) C13—C12—C17 121.0 (2)
O1—C2—C10 102.1 (2) C13—C12—S2 119.9 (2)
C3—C2—C10 106.1 (2) C17—C12—S2 119.0 (2)
O1—C2—H2 112.7 C12—C13—C14 119.2 (2)
C3—C2—H2 112.7 C12—C13—H13 120.4
C10—C2—H2 112.7 C14—C13—H13 120.4
C4—C3—C2 103.5 (2) C15—C14—C13 120.7 (3)
C4—C3—H3A 111.1 C15—C14—H14 119.6
C2—C3—H3A 111.1 C13—C14—H14 119.6
C4—C3—H3B 111.1 C14—C15—C16 118.9 (2)
C2—C3—H3B 111.1 C14—C15—C18 119.3 (3)
H3A—C3—H3B 109.0 C16—C15—C18 121.9 (3)
C5—C4—C9 120.2 (2) C17—C16—C15 121.3 (2)
C5—C4—C3 128.9 (2) C17—C16—H16 119.3
C9—C4—C3 110.8 (2) C15—C16—H16 119.3
C4—C5—C6 118.1 (2) C16—C17—C12 118.8 (2)
C4—C5—H5 120.9 C16—C17—H17 120.6
C6—C5—H5 120.9 C12—C17—H17 120.6
C7—C6—C5 121.6 (2) C15—C18—H18A 109.5
C7—C6—H6 119.2 C15—C18—H18B 109.5
C5—C6—H6 119.2 H18A—C18—H18B 109.5
C6—C7—C8 120.1 (3) C15—C18—H18C 109.5
C6—C7—H7 120.0 H18A—C18—H18C 109.5
C8—C7—H7 120.0 H18B—C18—H18C 109.5
C9—C8—C7 118.3 (2)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: NK2234).

References

  1. Barbey, C., Bouasla, R., Berredjem, M., Dupont, N., Retailleau, P., Aouf, N.-E. & Lecouvey, M. (2012). Tetrahedron, 68, 9125–9130.
  2. Berredjem, M., Allaoui, A., Direm, A., Aouf, N. & Benali-Cherif, N. (2010). Acta Cryst. E66, o1611–o1612. [DOI] [PMC free article] [PubMed]
  3. Bonnaud, B., Viani, R., Agoh, B., Delaunay, B., Dewinter, G., Montero, J.-L. & Aycard, J.-P. (1987). Acta Cryst. C43, 2466–2468.
  4. Bruker (2007). APEX2 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.
  5. Celentano, G. & Colonna, S. (1998). Chem. Commun. pp. 701–702.
  6. Dewynter, G., Abdaoui, M., Toupet, L. & Montero, J.-L. (1997). Tetrahedron Lett. 38, 8691–8694.
  7. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. [DOI] [PMC free article] [PubMed]
  8. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Silveira, G. P., Bonfante de Carvallho, C. & Oliver, A. G. (2012). Acta Cryst. E68, o2048. [DOI] [PMC free article] [PubMed]
  14. Silveira, G. P., Oliver, A. G. & Noll, B. C. (2013). Acta Cryst. E69, o979. [DOI] [PMC free article] [PubMed]
  15. Silveira, G. P., da Silva, V. F. & Oliver, A. G. (2014). Acta Cryst. E70, o1257–o1258. [DOI] [PMC free article] [PubMed]
  16. Silveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379–3383. [DOI] [PubMed]
  17. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015024779/nk2234sup1.cif

e-71-o1097-sup1.cif (364.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024779/nk2234Isup2.hkl

e-71-o1097-Isup2.hkl (240.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024779/nk2234Isup3.cml

. DOI: 10.1107/S2056989015024779/nk2234fig1.tif

Labeling diagram of the title compound. Atomic displacement ellipsoids depicted at the 50% probability level. Hydrogen atoms depicted as spheres of an arbitrary radius.

CCDC reference: 1444186

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES