Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Aug 15;90(16):7894–7897. doi: 10.1073/pnas.90.16.7894

A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia.

K Valentino 1, R Newcomb 1, T Gadbois 1, T Singh 1, S Bowersox 1, S Bitner 1, A Justice 1, D Yamashiro 1, B B Hoffman 1, R Ciaranello 1, et al.
PMCID: PMC47249  PMID: 8102803

Abstract

Calcium influx is believed to play a critical role in the cascade of biochemical events leading to neuronal cell death in a variety of pathological settings, including cerebral ischemia. The synthetic omega-conotoxin peptide SNX-111, which selectively blocks depolarization-induced calcium fluxes through neuronal N-type voltage-sensitive calcium channels, protected the pyramidal neurons in the CA1 subfield of the hippocampus from damage caused by transient forebrain ischemia in the rat model of four-vessel occlusion. SNX-111 provided neuroprotection when a single bolus injection was administered intravenously up to 24 hr after the ischemic insult. These results suggest that the window of opportunity for therapeutic intervention after cerebral ischemia may be much longer than previously thought and point to the potential use of omega-conopeptides and their derivatives in the prevention or reduction of neuronal damage resulting from ischemic episodes due to cardiac arrest, head trauma, or stroke. Microdialysis studies showed that SNX-111 was 3 orders of magnitude less potent in blocking potassium-induced glutamate release in the hippocampus than the conopeptide SNX-230, which, in contrast to SNX-111, failed to show any efficacy in the four-vessel occlusion model of ischemia. These results imply that the ability of a conopeptide to block excitatory amino acid release does not correlate with its neuroprotective efficacy.

Full text

PDF
7894

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buchan A. M. Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted? Cerebrovasc Brain Metab Rev. 1990 Spring;2(1):1–26. [PubMed] [Google Scholar]
  2. Buchan A., Li H., Pulsinelli W. A. The N-methyl-D-aspartate antagonist, MK-801, fails to protect against neuronal damage caused by transient, severe forebrain ischemia in adult rats. J Neurosci. 1991 Apr;11(4):1049–1056. doi: 10.1523/JNEUROSCI.11-04-01049.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchan A., Pulsinelli W. A. Hypothermia but not the N-methyl-D-aspartate antagonist, MK-801, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci. 1990 Jan;10(1):311–316. doi: 10.1523/JNEUROSCI.10-01-00311.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Busto R., Dietrich W. D., Globus M. Y., Valdés I., Scheinberg P., Ginsberg M. D. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab. 1987 Dec;7(6):729–738. doi: 10.1038/jcbfm.1987.127. [DOI] [PubMed] [Google Scholar]
  5. Choi D. W. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci. 1988 Oct;11(10):465–469. doi: 10.1016/0166-2236(88)90200-7. [DOI] [PubMed] [Google Scholar]
  6. Corbett D., Evans S., Thomas C., Wang D., Jonas R. A. MK-801 reduced cerebral ischemic injury by inducing hypothermia. Brain Res. 1990 Apr 30;514(2):300–304. doi: 10.1016/0006-8993(90)91424-f. [DOI] [PubMed] [Google Scholar]
  7. Cruz L. J., Olivera B. M. Calcium channel antagonists. Omega-conotoxin defines a new high affinity site. J Biol Chem. 1986 May 15;261(14):6230–6233. [PubMed] [Google Scholar]
  8. Deshpande J. K., Siesjö B. K., Wieloch T. Calcium accumulation and neuronal damage in the rat hippocampus following cerebral ischemia. J Cereb Blood Flow Metab. 1987 Feb;7(1):89–95. doi: 10.1038/jcbfm.1987.13. [DOI] [PubMed] [Google Scholar]
  9. Dienel G. A. Regional accumulation of calcium in postischemic rat brain. J Neurochem. 1984 Oct;43(4):913–925. doi: 10.1111/j.1471-4159.1984.tb12825.x. [DOI] [PubMed] [Google Scholar]
  10. Hillyard D. R., Monje V. D., Mintz I. M., Bean B. P., Nadasdi L., Ramachandran J., Miljanich G., Azimi-Zoonooz A., McIntosh J. M., Cruz L. J. A new Conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron. 1992 Jul;9(1):69–77. doi: 10.1016/0896-6273(92)90221-x. [DOI] [PubMed] [Google Scholar]
  11. Kirino T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res. 1982 May 6;239(1):57–69. doi: 10.1016/0006-8993(82)90833-2. [DOI] [PubMed] [Google Scholar]
  12. McCleskey E. W., Fox A. P., Feldman D. H., Cruz L. J., Olivera B. M., Tsien R. W., Yoshikami D. Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4327–4331. doi: 10.1073/pnas.84.12.4327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  14. Minamisawa H., Mellergård P., Smith M. L., Bengtsson F., Theander S., Boris-Möller F., Siesjö B. K. Preservation of brain temperature during ischemia in rats. Stroke. 1990 May;21(5):758–764. doi: 10.1161/01.str.21.5.758. [DOI] [PubMed] [Google Scholar]
  15. Obaid A. L., Flores R., Salzberg B. M. Calcium channels that are required for secretion from intact nerve terminals of vertebrates are sensitive to omega-conotoxin and relatively insensitive to dihydropyridines. Optical studies with and without voltage-sensitive dyes. J Gen Physiol. 1989 Apr;93(4):715–729. doi: 10.1085/jgp.93.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ohta S., Smith M. L., Siesjö B. K. The effect of a dihydropyridine calcium antagonist (isradipine) on selective neuronal necrosis. J Neurol Sci. 1991 May;103(1):109–115. doi: 10.1016/0022-510x(91)90293-g. [DOI] [PubMed] [Google Scholar]
  17. Olivera B. M., Cruz L. J., de Santos V., LeCheminant G. W., Griffin D., Zeikus R., McIntosh J. M., Galyean R., Varga J., Gray W. R. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry. 1987 Apr 21;26(8):2086–2090. doi: 10.1021/bi00382a004. [DOI] [PubMed] [Google Scholar]
  18. Plummer M. R., Logothetis D. E., Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron. 1989 May;2(5):1453–1463. doi: 10.1016/0896-6273(89)90191-8. [DOI] [PubMed] [Google Scholar]
  19. Pulsinelli W. A., Brierley J. B. A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke. 1979 May-Jun;10(3):267–272. doi: 10.1161/01.str.10.3.267. [DOI] [PubMed] [Google Scholar]
  20. Pulsinelli W. A., Brierley J. B., Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol. 1982 May;11(5):491–498. doi: 10.1002/ana.410110509. [DOI] [PubMed] [Google Scholar]
  21. Ramilo C. A., Zafaralla G. C., Nadasdi L., Hammerland L. G., Yoshikami D., Gray W. R., Kristipati R., Ramachandran J., Miljanich G., Olivera B. M. Novel alpha- and omega-conotoxins from Conus striatus venom. Biochemistry. 1992 Oct 20;31(41):9919–9926. doi: 10.1021/bi00156a009. [DOI] [PubMed] [Google Scholar]
  22. Sakakibara S., Shimonishi Y., Kishida Y., Okada M., Sugihara H. Use of anhydrous hydrogen fluoride in peptide synthesis. I. Behavior of various protective groups in anhydrous hydrogen fluoride. Bull Chem Soc Jpn. 1967 Sep;40(9):2164–2167. doi: 10.1246/bcsj.40.2164. [DOI] [PubMed] [Google Scholar]
  23. Sarin V. K., Kent S. B., Tam J. P., Merrifield R. B. Quantitative monitoring of solid-phase peptide synthesis by the ninhydrin reaction. Anal Biochem. 1981 Oct;117(1):147–157. doi: 10.1016/0003-2697(81)90704-1. [DOI] [PubMed] [Google Scholar]
  24. Shapira S., Kadar T., Adeymo O. M., Feuerstein G. Selective hippocampal lesion following omega-conotoxin administration in rats. Brain Res. 1990 Jul 23;523(2):291–294. doi: 10.1016/0006-8993(90)91499-7. [DOI] [PubMed] [Google Scholar]
  25. Siesjö B. K., Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J Cereb Blood Flow Metab. 1989 Apr;9(2):127–140. doi: 10.1038/jcbfm.1989.20. [DOI] [PubMed] [Google Scholar]
  26. Siesjö B. K. Historical overview. Calcium, ischemia, and death of brain cells. Ann N Y Acad Sci. 1988;522:638–661. doi: 10.1111/j.1749-6632.1988.tb33410.x. [DOI] [PubMed] [Google Scholar]
  27. Smith S. J., Augustine G. J. Calcium ions, active zones and synaptic transmitter release. Trends Neurosci. 1988 Oct;11(10):458–464. doi: 10.1016/0166-2236(88)90199-3. [DOI] [PubMed] [Google Scholar]
  28. Steen P. A., Newberg L. A., Milde J. H., Michenfelder J. D. Cerebral blood flow and neurologic outcome when nimodipine is given after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab. 1984 Mar;4(1):82–87. doi: 10.1038/jcbfm.1984.10. [DOI] [PubMed] [Google Scholar]
  29. Thilmann R., Xie Y., Kleihues P., Kiessling M. Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol. 1986;71(1-2):88–93. doi: 10.1007/BF00687967. [DOI] [PubMed] [Google Scholar]
  30. Tsien R. W., Lipscombe D., Madison D. V., Bley K. R., Fox A. P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 1988 Oct;11(10):431–438. doi: 10.1016/0166-2236(88)90194-4. [DOI] [PubMed] [Google Scholar]
  31. Tsuda T., Kogure K., Nishioka K., Watanabe T. Mg2+ administered up to twenty-four hours following reperfusion prevents ischemic damage of the Ca1 neurons in the rat hippocampus. Neuroscience. 1991;44(2):335–341. doi: 10.1016/0306-4522(91)90058-v. [DOI] [PubMed] [Google Scholar]
  32. Vass K., Welch W. J., Nowak T. S., Jr Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol. 1988;77(2):128–135. doi: 10.1007/BF00687422. [DOI] [PubMed] [Google Scholar]
  33. Wagner J. A., Snowman A. M., Biswas A., Olivera B. M., Snyder S. H. Omega-conotoxin GVIA binding to a high-affinity receptor in brain: characterization, calcium sensitivity, and solubilization. J Neurosci. 1988 Sep;8(9):3354–3359. doi: 10.1523/JNEUROSCI.08-09-03354.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamashiro D., Li C. H. New segment synthesis of alpha-inhibin-92 by the acyl disulfide method. Int J Pept Protein Res. 1988 Mar;31(3):322–334. doi: 10.1111/j.1399-3011.1988.tb00040.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES