Skip to main content
Thorax logoLink to Thorax
. 1996 Aug;51(8):799–804. doi: 10.1136/thx.51.8.799

Comparison of three inhaled non-steroidal anti-inflammatory drugs on the airway response to sodium metabisulphite and adenosine 5'-monophosphate challenge in asthma.

M Wang 1, A Wisniewski 1, I Pavord 1, A Knox 1, A Tattersfield 1
PMCID: PMC472543  PMID: 8795667

Abstract

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) are used to assess the role of prostaglandins in asthma but their effects on bronchoconstrictor challenges have been inconsistent. The effects of three nebulised nonsteroidal anti-inflammatory drugs on the airway response to inhaled sodium metabisulphite (MBS) and adenosine 5'-monophosphate (AMP) were compared in the same asthmatic subjects to see whether contractile prostaglandins were involved in MBS or AMP induced bronchoconstriction. A possible protective effect of the osmolarity or pH of the inhaled solutions was also assessed. METHODS: Two double blind placebo controlled studies were carried out. In study 1, 15 non-aspirin sensitive patients with mild asthma attended on four occasions and inhaled 5 ml of lysine aspirin (L-aspirin) 900 mg, indomethacin 50 mg, sodium salicylate 800 mg, or saline 20 minutes before an inhaled MBS challenge. On four further occasions 14 of the patients inhaled the same solutions followed by an inhaled AMP challenge. In study 2, 10 of the patients attended on four additional occasions and inhaled 5 ml of 0.9%, 3%, 10%, or 9.5% saline with indomethacin 50 mg 20 minutes before an inhaled MBS challenge. RESULTS: In study 1 inhaled lysine aspirin had a similar effect on MBS and AMP induced bronchoconstriction, increasing the provocative dose causing a 20% fall in FEV1 (PD20) by 1.29 (95% CI 0.54 to 2.03) and 1.23 (95% CI 0.53 to 1.93) doubling doses, respectively. Indomethacin increased the MBS PD20 and AMP PD20 by 0.64 (95% CI -0.1 to 1.38) and 0.99 (95% CI 0.29 to 1.69) doubling doses, respectively. Sodium salicylate had no significant effect on either challenge. The two solutions causing most inhibition were the most acidic and the most alkaline. In study 2 inhaled 9.5% saline with indomethacin (osmolarity 3005 mOsm/kg) increased the MBS PD20 by 1.1 doubling doses (95% CI 0.2 to 2.0) compared with only 0.09 (95% CI -0.83 to 1.0) and 0.04 (95% CI -0.88 to 0.95) doubling doses with 3% saline (918 mOsm/kg) and 10% saline (2994 mOsm/ kg), respectively. CONCLUSIONS: Inhaled L-aspirin and indomethacin have broadly similar protective effects against MBS and AMP induced bronchoconstriction in the doses given, although the effect of indomethacin on MBS was not quite statistically significant. The osmolarity and pH of the solutions did not appear to be important determinants of the response. The effect of L-aspirin and indomethacin is likely to be the result of cyclooxygenase inhibition reducing the production of contractile prostaglandins during MBS and AMP challenge.

Full text

PDF
799

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adkinson N. F., Jr, Newball H. H., Findlay S., Adams K., Lichtenstein L. M. Anaphylactic release of prostaglandins from human lung in vitro. Am Rev Respir Dis. 1980 Jun;121(6):911–920. doi: 10.1164/arrd.1980.121.6.911. [DOI] [PubMed] [Google Scholar]
  2. Beasley R., Varley J., Robinson C., Holgate S. T. Cholinergic-mediated bronchoconstriction induced by prostaglandin D2, its initial metabolite 9 alpha,11 beta-PGF2, and PGF2 alpha in asthma. Am Rev Respir Dis. 1987 Nov;136(5):1140–1144. doi: 10.1164/ajrccm/136.5.1140. [DOI] [PubMed] [Google Scholar]
  3. Belcher N. G., Rees P. J., Clark T. J., Lee T. H. A comparison of the refractory periods induced by hypertonic airway challenge and exercise in bronchial asthma. Am Rev Respir Dis. 1987 Apr;135(4):822–825. doi: 10.1164/arrd.1987.135.4.822. [DOI] [PubMed] [Google Scholar]
  4. Bianco S., Vaghi A., Pieroni M. G., Robuschi M., Refini R. M., Sestini P. Protective activity of inhaled nonsteroidal antiinflammatory drugs on bronchial responsiveness to ultrasonically nebulized water. J Allergy Clin Immunol. 1992 Nov;90(5):833–839. doi: 10.1016/0091-6749(92)90109-f. [DOI] [PubMed] [Google Scholar]
  5. Cockbill S. R., Heptinstall S., Taylor P. M. A comparison of the abilities of acetylsalicylic acid, flurbiprofen and indomethacin to inhibit the release reaction and prostaglandin synthesis in human blood platelets. Br J Pharmacol. 1979 Sep;67(1):73–78. [PMC free article] [PubMed] [Google Scholar]
  6. Crimi N., Palermo F., Polosa R., Oliveri R., Maccarrone C., Palermo B., Mistretta A. Effect of indomethacin on adenosine-induced bronchoconstriction. J Allergy Clin Immunol. 1989 May;83(5):921–925. doi: 10.1016/0091-6749(89)90106-1. [DOI] [PubMed] [Google Scholar]
  7. Fine J. M., Gordon T., Sheppard D. The roles of pH and ionic species in sulfur dioxide- and sulfite-induced bronchoconstriction. Am Rev Respir Dis. 1987 Nov;136(5):1122–1126. doi: 10.1164/ajrccm/136.5.1122. [DOI] [PubMed] [Google Scholar]
  8. Fujimura M., Sakamoto S., Saito M., Miyake Y., Matsuda T. Effect of a thromboxane A2 receptor antagonist (AA-2414) on bronchial hyperresponsiveness to methacholine in subjects with asthma. J Allergy Clin Immunol. 1991 Jan;87(1 Pt 1):23–27. doi: 10.1016/0091-6749(91)90208-6. [DOI] [PubMed] [Google Scholar]
  9. Goetzl E. J. Selective feed-back inhibition of the 5-lipoxygenation of arachidonic acid in human T-lymphocytes. Biochem Biophys Res Commun. 1981 Jul 30;101(2):344–350. doi: 10.1016/0006-291x(81)91266-3. [DOI] [PubMed] [Google Scholar]
  10. Kujubu D. A., Herschman H. R. Dexamethasone inhibits mitogen induction of the TIS10 prostaglandin synthase/cyclooxygenase gene. J Biol Chem. 1992 Apr 25;267(12):7991–7994. [PubMed] [Google Scholar]
  11. Mann J. S., Holgate S. T., Renwick A. G., Cushley M. J. Airway effects of purine nucleosides and nucleotides and release with bronchial provocation in asthma. J Appl Physiol (1985) 1986 Nov;61(5):1667–1676. doi: 10.1152/jappl.1986.61.5.1667. [DOI] [PubMed] [Google Scholar]
  12. Masferrer J. L., Seibert K., Zweifel B., Needleman P. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3917–3921. doi: 10.1073/pnas.89.9.3917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meade E. A., Smith W. L., DeWitt D. L. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem. 1993 Mar 25;268(9):6610–6614. [PubMed] [Google Scholar]
  14. Mitchell J. A., Akarasereenont P., Thiemermann C., Flower R. J., Vane J. R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11693–11697. doi: 10.1073/pnas.90.24.11693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. NADEL J. A., SALEM H., TAMPLIN B., TOKIWA Y. MECHANISM OF BRONCHOCONSTRICTION DURING INHALATION OF SULFUR DIOXIDE. J Appl Physiol. 1965 Jan;20:164–167. doi: 10.1152/jappl.1965.20.1.164. [DOI] [PubMed] [Google Scholar]
  16. Nichol G. M., Nix A., Chung K. F., Barnes P. J. Characterisation of bronchoconstrictor responses to sodium metabisulphite aerosol in atopic subjects with and without asthma. Thorax. 1989 Dec;44(12):1009–1014. doi: 10.1136/thx.44.12.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Connor B. J., Barnes P. J., Chung K. F. Inhibition of sodium metabisulphite induced bronchoconstriction by frusemide in asthma: role of cyclooxygenase products. Thorax. 1994 Apr;49(4):307–311. doi: 10.1136/thx.49.4.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pasargiklian M., Bianco S., Allegra L. Clinical, functional and pathogenetic aspects of bronchial reactivity to prostaglandins F2alpha, E1, and E2. Adv Prostaglandin Thromboxane Res. 1976;1:461–475. [PubMed] [Google Scholar]
  19. Pasargiklian M., Bianco S., Allegra L., Moavero N. E., Petrigni G., Robuschi M., Grugni A. Aspects of bronchial reactivity to prostaglandins and aspirin in asthmatic patients. Respiration. 1977;34(2):78–91. [PubMed] [Google Scholar]
  20. Pavord I. D., Wisniewski A., Tattersfield A. E. Refractoriness to inhaled sodium metabisulphite in subjects with mild asthma. Eur Respir J. 1994 Jan;7(1):50–54. doi: 10.1183/09031936.94.07010050. [DOI] [PubMed] [Google Scholar]
  21. Pavord I. D., Wong C. S., Williams J., Tattersfield A. E. Effect of inhaled prostaglandin E2 on allergen-induced asthma. Am Rev Respir Dis. 1993 Jul;148(1):87–90. doi: 10.1164/ajrccm/148.1.87. [DOI] [PubMed] [Google Scholar]
  22. Phillips G. D., Foord R., Holgate S. T. Inhaled lysine-aspirin as a bronchoprovocation procedure in aspirin-sensitive asthma: its repeatability, absence of a late-phase reaction, and the role of histamine. J Allergy Clin Immunol. 1989 Aug;84(2):232–241. doi: 10.1016/0091-6749(89)90330-8. [DOI] [PubMed] [Google Scholar]
  23. Phillips G. D., Holgate S. T. The effect of oral terfenadine alone and in combination with flurbiprofen on the bronchoconstrictor response to inhaled adenosine 5'-monophosphate in nonatopic asthma. Am Rev Respir Dis. 1989 Feb;139(2):463–469. doi: 10.1164/ajrccm/139.2.463. [DOI] [PubMed] [Google Scholar]
  24. Phillips G. D., Rafferty P., Beasley R., Holgate S. T. Effect of oral terfenadine on the bronchoconstrictor response to inhaled histamine and adenosine 5'-monophosphate in non-atopic asthma. Thorax. 1987 Dec;42(12):939–945. doi: 10.1136/thx.42.12.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Platshon L. F., Kaliner M. The effects of the immunologic release of histamine upon human lung cyclic nucleotide levels and prostaglandin generation. J Clin Invest. 1978 Dec;62(6):1113–1121. doi: 10.1172/JCI109230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ronco J. J., Fenwick J. C., Wiggs B. R., Phang P. T., Russell J. A., Tweeddale M. G. Oxygen consumption is independent of increases in oxygen delivery by dobutamine in septic patients who have normal or increased plasma lactate. Am Rev Respir Dis. 1993 Jan;147(1):25–31. doi: 10.1164/ajrccm/147.1.25. [DOI] [PubMed] [Google Scholar]
  27. Smith J. B., Willis A. L. Aspirin selectively inhibits prostaglandin production in human platelets. Nat New Biol. 1971 Jun 23;231(25):235–237. doi: 10.1038/newbio231235a0. [DOI] [PubMed] [Google Scholar]
  28. Smith W. L. The eicosanoids and their biochemical mechanisms of action. Biochem J. 1989 Apr 15;259(2):315–324. doi: 10.1042/bj2590315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tamaoki J., Sekizawa K., Graf P. D., Nadel J. A. Cholinergic neuromodulation by prostaglandin D2 in canine airway smooth muscle. J Appl Physiol (1985) 1987 Oct;63(4):1396–1400. doi: 10.1152/jappl.1987.63.4.1396. [DOI] [PubMed] [Google Scholar]
  30. Vanderhoek J. Y., Bryant R. W., Bailey J. M. Inhibition of leukotriene biosynthesis by the leukocyte product 15-hydroxy-5,8,11,13-eicosatetraenoic acid. J Biol Chem. 1980 Nov 10;255(21):10064–10066. [PubMed] [Google Scholar]
  31. Wright W., Zhang Y. G., Salome C. M., Woolcock A. J. Effect of inhaled preservatives on asthmatic subjects. I. Sodium metabisulfite. Am Rev Respir Dis. 1990 Jun;141(6):1400–1404. doi: 10.1164/ajrccm/141.6.1400. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES