Skip to main content
Scientific Reports logoLink to Scientific Reports
. 2016 Jan 22;6:19885. doi: 10.1038/srep19885

Achromatic flat optical components via compensation between structure and material dispersions

Yang Li 1,*, Xiong Li 1,*, Mingbo Pu 1,*, Zeyu Zhao 1, Xiaoliang Ma 1, Yanqin Wang 1, Xiangang Luo 1,a
PMCID: PMC4726289  PMID: 26794855

Abstract

Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems.


Flat optical components attracted a large amount of researches due to their advantages of being light weight and often low cost. Most of Flat optical components, such as diffraction grating1, Fresnel zone plate1 and photon sieve2, are based on diffractive optical elements (DOEs). However, DOEs suffer from significant chromatic aberrations: the beam deflection angle and focal length increase and decrease with increasing wavelength, respectively. The chromatism is valuable in the areas, such as spectrum measurement and wavelength-division multiplexing (WDM) in communication, but it is also a serious problem in imaging system, which causes degradation of the imaging quality. To solve this problem, the most common method is refractive/diffractive hybrid optical systems to compensate the dispersion in DOEs by the opposite dispersion in refractive lens3. However, combined with traditional refractive lens, systems become heavy and complex, which leads to the satisfaction of the flat, light weight and easy integration properties. The chromatism exists not only in traditional flat optics components, but also in metasurfaces4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 which attract great interests for its ultra-thin, ultra-light, flat and integratable properties. The broadband property of metasurface has also been investigated and most of these metasurfaces hold reversed chromatism similar to DOEs4,5,6,7.

Chromatic aberration is a functional distortion of the optical component at different wavelengths. The reason is the component’s phase mismatch for different wavelengths no matter in traditional refractive and diffractive optical components or novel metasurface. In refractive optics, the phase is accumulated through propagation in which is decided by physical distance and refractive index n(λ). For normal material dispersion, the refractive index n(λ) increases with decreasing wavelength, which causes an extra phase to make phase mismatch at different wavelength. For diffractive optics, owing to the efficient light path is short in DOEs, the material dispersion can be ignored. However, the chormatism generated by structure dispersion appears. For instance, the directions of the beams diffracted by grating depend on the spacing of the grating and the wavelength of the light. For the same grating, the diffracted angle is positively related to the wavelength. To achieve the same diffracted direction, the spacing of the grating should increase while wavelength increases. It can also be interpreted as the spacing of the grating is required to match the equal phase diffractive wavefronts at different wavelength. For metasurface, although dispersionless phase generated by metasurface is realized7,8,9, the phases are not matching the required phase diffractive wavefronts at different wavelength. Most recently, Capasso et al. proposed a new method using rectangular dielectric resonator for multi-wavelengths to achieve achromatism via dispersive phase compensation10. However, the essence of this work is multi-wavelength achromatic and not continuously broadband achromatic.

In this paper, a method to overcome the above issues suffered by previous flat optical components is proposed by utilizing structure dispersion from surface plasmon polaritions (SPP) mode in metal-insulator-metal (MIM) waveguide to compensate material dispersion from metal for achieving a broadband achromatic plasmonic component (APC). The dispersion properties of silver MIM waveguide is proved broadband achromatic in both theory and finite element simulation at the wavelength λ  =  1000–2000 nm. A flat deflector and lens based on MIM waveguides are validated broadband achromatic as theory analysis predicted. The deflector is designed can maintain broadband achromatic directional radiation at arbitrary incident angle. This method opens opportunities to realize lightweight chromatically-corrected imaging systems and achromatic flat integrated optical systems.

Results

Principle and unit cell

To realize any desired functionality (focusing, beam deflection, etc.), the phase retardation of optical component is required to compensate the phase retardation of propagation in free space. For example, in traditional refractive lens, the light path in lens is used to compensate the light path in free space propagation from lens to focus spot to achieve that total light path is a constant. The dispersion of required phase Inline graphic at the point r can be generally given by10:

graphic file with name srep19885-m2.jpg

where Inline graphic is the physical distance between the interface at position r and the desired wavefront. The free parameter Inline graphic can be set as an arbitrary value to optimize the elements for linear optics applications. Therefore, relative phase distribution Inline graphic can be used to substitute absolute phase distribution Inline graphic. For broadband metasurface4,8, Inline graphic usually does not change at varied wavelength so that the desired Inline graphicbecomes Inline graphic with incident wavelength λ when the phase distribution is designed for λ0. The effect of this change is that the beam deflection angle and the focal length are directly and inversely proportional to the wavelength for the functional components, respectively. For an achromatic component, Inline graphic, which carry the information for the functionality, should be a constant at the same point r so that the desired phase at an arbitrary point r is only a function of wavelength so that Eq. (1) can be written as,

graphic file with name srep19885-m11.jpg

Therefore, there is an assist parameter Inline graphic to design the achromatic components. For an achromatic flat component, Inline graphic is dispersionless at an arbitrary point.

In recent years, metallic optical waveguides have been of particular interest in plasmonics research due to the evanescent wave magnification and field localization properties of surface plasmon22,23,24,25,26,27,28,29,30,31,32,33,34. The amazing properties of these waveguides are potential to overcome the diffraction limit in conventional dielectric waveguides and to realize nano-scale photonic components for high integration23. However, the chromatic aberration is a great challenge in the optical components based on metallic waveguide. For instance, the deflection angle increases obviously with increasing wavelength23; the focus points shift distinctly at different wavelength24. The chromatism results from the material dispersion and structure dispersion of MIM waveguide. Here we show that these two kinds of dispersion are opposite and can be designed to compensate each other in special conditions.

When a MIM slit with subwavelength width is illuminated by TM polarized radiation, only the SPP mode exists and can be considered as the fundamental mode which produces phase retardation. The complex propagation constant β of SPP mode in MIM waveguide is given by the eigenvalue equation23:

graphic file with name srep19885-m14.jpg

where w is the width of slit; k0 is the wave vector of light in free space; εd and εm are the permittivities of the dielectric medium filled in the slit and the metal, respectively.

The material dispersive behavior of metal Inline graphic can be estimated by the Drude model35:

graphic file with name srep19885-m16.jpg

where Inline graphic is the angular frequency of the incident electromagnetic radiation, Inline graphic is the permittivity at infinite angular frequency, Inline graphic is the bulk plasma frequency which represents the natural frequency of the oscillations of free conduction electrons, and Inline graphic is the collision frequency. At the frequency Inline graphic and Inline graphic, Inline graphic can be approximated to:

graphic file with name srep19885-m24.jpg

Applying Eq. (5) to simplify Eq. (3), the βλ can be written as a function of permittivity of dielectric εd and slit width w:

graphic file with name srep19885-m25.jpg

When the SPP wave passes through the subwavelength metallic slit, the output phase retardation Inline graphic of light transmitted through each slit can be expressed by23:

graphic file with name srep19885-m27.jpg

where Inline graphic originates from multiple reflections between the entrance and exit surface23; h presents the length of the MIM waveguide. Both physical analysis and numerical simulations show that βh plays a dominating role in phase shift23. Therefore, if we choose m = 0, Inline graphic can be approximated as Re(βh). The imaginary part of propagation constant of the SPP in the MIM slit is usually ignorable (Im(β) ≪1) at the frequency ω much higher than collision frequency γ. The waveguide length h is a constant in components based on MIM slits as shown in Fig. 1(a), so:

Figure 1. Structural geometry and phase shift dispersion.

Figure 1

(a) Side view of the achromatic component designed for achromatic lens. The component includes 51 unit cells as shown in the inset. The parameters w, h and p represent the width of dielectric, length of the waveguide and period of the MIM unit cell, respectively. (b) Relative phase shift Inline graphic through MIM structure at different wavelength at varied slit width in theoretical calculation and numerical simulation. (c) Theoretical and numerical calculated Inline graphic at different wavelength at different slit width.

graphic file with name srep19885-m30.jpg

Thus, the MIM waveguide is theoretically proved achromatic at the designed filled dielectric, slit width and slit depth in the frequency range Inline graphic and Inline graphic.

Furthermore, the dispersive behavior of MIM waveguide is demonstrated in theoretical calculation and numerical simulation. The basic unit of the APC based on MIM waveguide is shown by the schematic cross-section in the inset of Fig. 1(a). The metallic slit width w is varied from 20 nm to 100 nm, and the length of waveguide h is fixed at 3 μm. The relative permittivity of the material filled in the slit is assumed to be εd =  1 for air. Silver is chosen as the metal in this model due to its lower loss.

The dispersion of the MIM silts is shown as Fig. 1(b). Inline graphic is defined as phase shift compared with the φ at slit width w = 20 nm. The propagation constant β gets the maximum when slit width w gets the minimum as Eq. (6), so that Inline graphic is negative at w > 20 nm. A clear trend of the phase shift Inline graphic increasing can be seen when decreases slit width w or increases wavelength λ. Figure 1(c) shows the theoretically calculated and numerically simulated Inline graphic with different silt widths at different wavelengths. Inline graphic increases rapidly for the increased wavelength below 800 nm and becomes stable at longer wavelength. This phenomenon matches the theoretical analysis that the achromatic effect in our model happens at the frequency Inline graphic and Inline graphic. The slight phase oscillation can be explained by Fabry-Perot effect (which is considered as θ in Eq. (3)).

Achromatic light deflection

Light deflector is a basic optical component to deflect the light, which can be realized by optical wedge in refractive optics and grating in diffractive optics. In order to deflect the beam into a spatial orientation with an angle θ0, the phase retardation Inline graphic of light transmitted through the slits along the x direction should take the form:

graphic file with name srep19885-m41.jpg

Based on the aforementioned analysis, an achromatic deflector can be designed by directly arranging the slit width distribution to generate phase shift to match the phase distribution of single wavelength in achromatic range as shown in Fig. 2(a). For instance, a deflector is designed by 29 metallic slits with varies width for deflecting normally incident light to an angle = −19° for λ = 1 μm. The Ex distribution of this component with three different wavelengths are shown as Fig. 2(b–d). The beams at three wavelengths are deflected into the same direction and the deflection angles are almost the same as Fig. 2(e). As shown in the inset of Fig. 2(e), the deflection angles are near −19° with deviation less than 5% at the whole wavelength range.

Figure 2. Achromatic plasmonic deflector.

Figure 2

(a) Schematic configuration of flat achromatic beam deflector. (b–d) Ex distribution of the deflector at the wavelength λ = 1000 nm, 1500 nm and 2000 nm, respectively. (e) Simulated far field intensity as a function of the deflection angle θ with normal illumination. Inset: Simulated deflection angle θ as a function of wavelength. (e–f) Simulated phase shift (f) and Inline graphic (g) at 200nm above the output surface at the wavelength λ = 1000 nm (blue), 1500nm (green) and 2000nm (red).

To unveil the essence of the achromatic performance, the phase distributions are analyzed. The simulated phase distributions at different wavelengths are almost linear functions for the spatial coordinate x as shown in Fig. 2(f). This result proves that normal incident plane waves are deflected and show expected phase distribution as Eq. (10). As previously demonstrated, Inline graphic should be a constant at the same position at different wavelengths for an achromatic component. Figure 2(g) shows the calculated Inline graphic profiles at the output plane of the deflector at different wavelengths, which coincide very well as predicted.

Not limited by normal incidence, this achromatic deflector can work when the incident beam off-axis illuminates the component. Figure 3(a) shows the Ex distributions at different incident angles (−10°, 20° and 40°) and wavelengths (λ = 1000 nm, 1500 nm and 2000 nm). With the same incident angle, the lights at different wavelengths are deflected into almost the same direction. In theory, the deflection angle is calculated by14,15:

Figure 3. Achromatic properties of deflector with off-axis incidence.

Figure 3

(a) Ex distribution of flat achromatic deflector illuminated by light at the wavelength λ = 1000 nm, λ = 1500 nm and λ = 2000 nm with incident angles θi  = −10, 20 and 40 degrees. (b) Transmitted deflection angles as a function of wavelength at the condition of different incident angle θi = −10, 0, 10, 20, 30 and 40 degrees by numerical simulation (points) and theoretical calculation (dashed lines).

graphic file with name srep19885-m44.jpg

where θi is the incident angle, θt and θ0 are the deflection angle with off-axis and normal incidence, respectively. The refractive index ni is 1.44 for glass substrate and nt is 1 for the air. Because θ0 is proved achromatic, the deflection angle θt can be predicted achromatic at arbitrary incident angle in theory. As shown in Fig. 3(b), the dashed lines are the theoretical deflection angles with different incident angels calculated by Eq. (10), which is unchanged at different wavelengths. The simulated defection angles (points) perfectly match the theoretical defection angles (dashed lines) in a broadband frequency range and at arbitrary incident angles from −10° to 40°, while the deflection angle is from −35° to 37°. Theoretically, the achromatic performance will not change at arbitrary incident angle if the aperture is large enough.

Achromatic light focusing

The design for a flat achromatic lens based on metallic slits is also presented. The required phase retardation as a function of spatial distance x can be calculated as:

graphic file with name srep19885-m45.jpg

where f is the focal length of the plasmonic lens.

The phase distribution is designed for f = 5 μm. The number of slits in our design is 51 and the period of the structure is chosen as 200 nm. As shown in Fig. 4(a), the focus length is very closed to 5 μm at different wavelengths. Insets of Fig. 4(a) show the electric field intensity distribution of plasmonic lens illuminated by the light at wavelength of 1000 nm, 1500 nm and 2000 nm, respectively. Although the sizes of focus spot are different, which is determined by diffraction limit, the focus length are the same so this flat lens is achromatic.

Figure 4. Achromatic plasmonic lens.

Figure 4

(a) Focus lengths of the designed achromatic lens at different wavelength. Electric field intensity Inline graphic distributions at the wavelength λ = 1000 nm, 1500 nm and 2000 nm are shown in the inset. (b) Numerical (solid line) simulated and ideal (dashed line) phase distribution at 200 nm above the output surface at the wavelength λ = 1000 nm (blue), 1500 nm (green) and 2000 nm (red). (c) Simulated spatial distribution of Inline graphic at the wavelength λ = 1000 nm (blue), 1500 nm (green) and 2000 nm (red).

To analyze the achromatic performance, the simulated phase distributions at 200 nm above the output plane of the flat lens are shown as solid lines in Fig. 4(b). The dashed lines in Fig. 4(b) stand for the theoretical achromatic distributions for target focus length at different wavelengths obtained from Eq. (9). The simulated phase distributions of output light with different wavelengths show good agreement with the theoretical prediction. Figure 4(c) shows the normalized Inline graphic as a function of the x-position. Simulated Inline graphic is almost the same, which leads to the same focal length. The slight focus shift can be explained by the little deviation of Inline graphic.

Discussion

Compared with the metasurface based on rectangular dielectric resonator10 which can get achromatism at only a few discrete wavelengths and encounter much greater deviation at the other wavelengths, our design can hold achromatic performance in such a continuously broadband range λ = 1000–2000 nm. Furthermore, this kind of achromatic flat components can avoid complex parameters scanning as the method proposed by Capasso et al. Although our design has a challenge in fabrication, it can be realized by the process as shown in Fig. S1.

In addition, theoretically, the achromatic deflection of the MIM based deflector is preserved in arbitrary incident angle, because the MIM waveguide can maintain the desired phase shift by the unique SPP mode at arbitrary incident angle, revealing obvious superiority compared with the achromatic dielectric metasurface with ±1° incident angle tolerance10. Actually, aperture is another factor influencing the deflection angle. When the equivalent aperture is as small as wavelength with the increasing incident angle, diffraction affects the deflective behavior.

In summary, we report a method of designing achromatic plasmonic components by compensation between structure dispersion and material dispersion. To demonstrate this method, MIM waveguide is chosen to support structure dispersion of SPP mode and material dispersion of metal. From the theory analysis and simulation results, MIM waveguides can be used to realize achromatic flat component at frequency Inline graphic and Inline graphic. Achromatic deflector and lens are both designed based on sliver slits with variant width at broadband range λ = 1000–2000 nm. It is noteworthy that the deflector can maintain a broadband achromatic performance with arbitrary incident angles. Our method opens great potential applications in multicolor stereo imaging and broadband light collection by flat optics components.

Methods

Simulation

Numerical simulation results are calculated by COMSOL4.3. A perfect matched layer (PML) as an absorbing boundary condition is used to dissipate outgoing waves. MIM waveguides array are simulated with period of 200 nm. All the simulated phase distributions are at the plane 200 nm above the output surface to minimize the near field noise. The dispersive permittivity of silver is calculated by Drude model25 (Inline graphic = 4.2; Inline graphic = 1.3 × 1016 rad/s, and Inline graphic = 9.1 × 1013 rad/s).

Additional Information

How to cite this article: Li, Y. et al. Achromatic flat optical components via compensation between structure and material dispersions. Sci. Rep. 6, 19885; doi: 10.1038/srep19885 (2016).

Supplementary Material

Supplementary Information
srep19885-s1.doc (273KB, doc)

Acknowledgments

We acknowledge the financial support by 973 Program of China under contract No. 2013CBA01700 and the National Natural Science Foundation of China under grants 61138002 and 61307043.

Footnotes

Author Contributions Y.L., X.L. and M.B.P. contributed equally to the numerical simulation and manuscript preparation, Z.Y.Z., X.L.M. and Y.Q.W. contributed in the analysis and physical interpretation. X.G.L. conceived the original idea and supervised the project. All the authors have analyzed and discussed the results thoroughly and contributed to the writing of the manuscript.

References

  1. Born M. & Wolf E. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. 7th ed., Ch. 8, 446–475 (Cambridge University Press, 1999).
  2. Andersen G. Large optical photon sieve. Opt. Lett. 30, 2976–2978 (2005). [DOI] [PubMed] [Google Scholar]
  3. Stone T. & George N. Hybrid diffractive-refractive lenses and achromats. Appl. Opt. 27, 2960–2971 (1988). [DOI] [PubMed] [Google Scholar]
  4. Saeidi. C. & van der Weide D. Wideband plasmonic focusing metasurfaces. Appl. Phys. Lett. 105, 053107 (2014). [Google Scholar]
  5. Lin D., Fan P., Hasman E. & Brongersma M. L. Dielectric gradient metasurface optical elements. Science 345, 6194 (2014). [DOI] [PubMed] [Google Scholar]
  6. Pfeiffer C. et al. Efficient light bending with isotropic metamaterial Huygens’ surfaces. Nano Lett. 14, 2491–2497 (2014). [DOI] [PubMed] [Google Scholar]
  7. Ni X., Ishii S., Kildishev A. V. & Shalaev V. M. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light: Science & Applications 2, e72 (2013). [Google Scholar]
  8. Huang L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12, 5750−5755 (2012). [DOI] [PubMed] [Google Scholar]
  9. Pors A., Nielsen M. G., Eriksen R. L. & Bozhevolnyi I. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829–834 (2013). [DOI] [PubMed] [Google Scholar]
  10. Aieta F., Kats M. A., Genevet P. & Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). [DOI] [PubMed] [Google Scholar]
  11. Huang L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). [Google Scholar]
  12. Nasari H. & Abrishamian M. S. Electrically tunable light focusing via a plasmonic lens. J. Opt. 14, 125002–125008 (2012). [Google Scholar]
  13. Chen Q. A novel plasmonic zone plate lens based on nanoslits with refractive index modulation. Plasmonics 6, 381–385 (2011). [Google Scholar]
  14. Yu N. & Capasso F. Flat optics with designer metamsurfaces. Nat. Mater. 13, 139–150 (2014). [DOI] [PubMed] [Google Scholar]
  15. Yu N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011). [DOI] [PubMed] [Google Scholar]
  16. Gao H. et al. Broadband plasmonic microlenses based on patches of nanoholes. Nano Lett. 10, 4111–4116 (2010). [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pu M. et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci. Adv. 1, e1500396 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ma X. et al. A planar chiral meta-surface for optical vortex generation and focusing. Sci. Rep. 5, 10365 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Qin F. et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light. Sci. Rep. 5, 09977 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pu M. et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping. Sci. Rep. 5, 9822 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Chen Y. et al. Engineering the phase front of light with phase-change material based planar lenses. Sci. Rep. 5, 8660 (2015). [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Luo X., Pu M., Ma X. & Li X. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices. Int. J. Antennas Propag. 2015, 204127 (2015). [Google Scholar]
  23. Luo X. Principles of electromagnetic waves in metasurfaces. Sci. China-Phys. Mech. Astron. 58, 594201 (2015). [Google Scholar]
  24. Wang B., Wu X. & Zhang Y. Multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays. Plasmonics 8, 1535–1541 (2013). [Google Scholar]
  25. Xu T. et al. Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns. Appl. Phys. B 97, 175–179 (2009). [Google Scholar]
  26. Chang C. M. et al. Three-dimensional plasmonic micro projector for light manipulation. Adv. Mater. 25, 1118–1123 (2013). [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rahmani M. et al. Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution. ACS Nano 7, 11138–11146 (2013). [DOI] [PubMed] [Google Scholar]
  28. Luo X. & Yan L. Surface plasmon polaritons and its applications. IEEE Photonics J. 4, 590–595 (2012). [Google Scholar]
  29. Lin J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331 (2013). [DOI] [PubMed] [Google Scholar]
  30. Eisenbach O., Avayu O., Ditcovski R. & Ellenbogen T. Metasurfaces based dual wavelength diffractive lenses. Opt. Express 23, 3928–3936 (2015). [DOI] [PubMed] [Google Scholar]
  31. Tang D. et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser & Photonics Reviews 9, 713–719(2015). [Google Scholar]
  32. Barnes W. L., Dereux A. & Ebbesen T. W. Surface plasmon subwavelength optics. Nature 424, 824–30 (2003). [DOI] [PubMed] [Google Scholar]
  33. Aieta F. et al. Aberration-Free Ultrathin Flat Lenses and Axicons at Telecom Wavelengths Based on Plasmonic Metasurfaces. Nano Lett. 12, 4932−4936 (2012). [DOI] [PubMed] [Google Scholar]
  34. Huang Y. W. et al. Aluminum Plasmonic Multicolor Meta-Hologram. Nano Lett. 15, 3122–3127 (2015). [DOI] [PubMed] [Google Scholar]
  35. Maier S. A. Plasmonics: fundamentals and applications, Ch. 1, 11–15 (Springer, 2007). [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Information
srep19885-s1.doc (273KB, doc)

Articles from Scientific Reports are provided here courtesy of Nature Publishing Group

RESOURCES