Skip to main content
Thorax logoLink to Thorax
. 1996 Dec;51(12):1192–1198. doi: 10.1136/thx.51.12.1192

Histamine induced bronchoconstriction and end tidal inspiratory activity in man.

N E Meessen 1, C P van der Grinten 1, S C Luijendijk 1, H T Folgering 1
PMCID: PMC472762  PMID: 8994514

Abstract

BACKGROUND: End tidal inspiratory activity (ETIA) in diaphragm and parasternal intercostal muscles can be evoked in man and in animals by administration of histamine. Exacerbations of asthma and administration of histamine are often accompanied by hyperinflation. The aims of the study were to determine (1) the magnitude of ETIA in response to histamine in man, (2) the relative contributions of chemical and mechanical stimulation of airway receptors to ETIA, and (3) the importance of ETIA to hyperinflation. METHODS: The effects of inhalation of histamine on the electrical activities of the diaphragm and parasternal intercostal muscles measured with surface electrodes were studied in 21 subjects. The experiments were repeated after inhalation of 600 micrograms of salbutamol to prevent histamine induced bronchoconstriction and concomitant mechanical stimulation of airway receptors. Subjects were connected to a closed breathing circuit to measure the changes in functional residual capacity (FRC) for the different experiments. RESULTS: The mean values of histamine induced ETIA were 60.6% and 46.9% of peak inspiratory activities during control conditions for the diaphragm and intercostal muscles, respectively. After salbutamol histamine induced ETIA was reduced to about one quarter of pre-salbutamol values. FRC increased by 427 ml as a result of inhalation of histamine, but after salbutamol this increase was only 53 ml. The data for ETIA and FRC were interpreted as indicating that the contributions of airflow limitation and ETIA to histamine induced hyperinflation are comparable. CONCLUSIONS: Histamine is a forceful stimulus for inducing ETIA. Both chemical and mechanical stimulation of airway receptors contribute to evoke ETIA, of which the contribution of mechanical stimulation is the more important one. ETIA contributes substantially to histamine induced hyperinflation.

Full text

PDF
1192

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D. J., Luck J. C. A comparative study of irritant and type J receptors in the cat. Respir Physiol. 1974 Jul;21(1):47–60. doi: 10.1016/0034-5687(74)90006-1. [DOI] [PubMed] [Google Scholar]
  2. Badier M., Jammes Y., Romero-Colomer P., Lemerre C. Tonic activity in inspiratory muscles and phrenic motoneurons by stimulation of vagal afferents. J Appl Physiol (1985) 1989 Apr;66(4):1613–1619. doi: 10.1152/jappl.1989.66.4.1613. [DOI] [PubMed] [Google Scholar]
  3. Banzett R. B., Inbar G. F., Brown R., Goldman M., Rossier A., Mead J. Diaphragm electrical activity during negative lower torso pressure in quadriplegic men. J Appl Physiol Respir Environ Exerc Physiol. 1981 Sep;51(3):654–659. doi: 10.1152/jappl.1981.51.3.654. [DOI] [PubMed] [Google Scholar]
  4. Clément J., Làndsér F. J., Van de Woestijne K. P. Total resistance and reactance in patients with respiratory complaints with and without airways obstruction. Chest. 1983 Feb;83(2):215–220. doi: 10.1378/chest.83.2.215. [DOI] [PubMed] [Google Scholar]
  5. Cockcroft D. W., Killian D. N., Mellon J. J., Hargreave F. E. Protective effect of drugs on histamine-induced asthma. Thorax. 1977 Aug;32(4):429–437. doi: 10.1136/thx.32.4.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies A., Roumy M. A role of pulmonary rapidly adapting receptors in control of breathing. Aust J Exp Biol Med Sci. 1986 Feb;64(Pt 1):67–78. doi: 10.1038/icb.1986.8. [DOI] [PubMed] [Google Scholar]
  7. Demedts M. Mechanisms and consequences of hyperinflation. Eur Respir J. 1990 Jun;3(6):617–618. [PubMed] [Google Scholar]
  8. Dixon M., Jackson D. M., Richards I. M. The effects of H1- and H2-receptor agonists and antagonists on total lung resistance, dynamic lung compliance and irritant receptor discharge in the anaesthetized dog. Br J Pharmacol. 1979 Jun;66(2):203–209. doi: 10.1111/j.1476-5381.1979.tb13666.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dixon M., Jackson D. M., Richards I. M. The effects of histamine, acetylcholine and 5-hydroxytryptamine on lung mechanics and irritant receptors in the dog. J Physiol. 1979 Feb;287:393–403. doi: 10.1113/jphysiol.1979.sp012666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gross D., Grassino A., Ross W. R., Macklem P. T. Electromyogram pattern of diaphragmatic fatigue. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jan;46(1):1–7. doi: 10.1152/jappl.1979.46.1.1. [DOI] [PubMed] [Google Scholar]
  11. Hargreave F. E., Ryan G., Thomson N. C., O'Byrne P. M., Latimer K., Juniper E. F., Dolovich J. Bronchial responsiveness to histamine or methacholine in asthma: measurement and clinical significance. J Allergy Clin Immunol. 1981 Nov;68(5):347–355. doi: 10.1016/0091-6749(81)90132-9. [DOI] [PubMed] [Google Scholar]
  12. Lándsér F. J., Nagles J., Demedts M., Billiet L., van de Woestijne K. P. A new method to determine frequency characteristics of the respiratory system. J Appl Physiol. 1976 Jul;41(1):101–106. doi: 10.1152/jappl.1976.41.1.101. [DOI] [PubMed] [Google Scholar]
  13. Martin J. G., Habib M., Engel L. A. Inspiratory muscle activity during induced hyperinflation. Respir Physiol. 1980 Mar;39(3):303–313. doi: 10.1016/0034-5687(80)90062-6. [DOI] [PubMed] [Google Scholar]
  14. Martin J., Powell E., Shore S., Emrich J., Engel L. A. The role of respiratory muscles in the hyperinflation of bronchial asthma. Am Rev Respir Dis. 1980 Mar;121(3):441–447. doi: 10.1164/arrd.1980.121.3.441. [DOI] [PubMed] [Google Scholar]
  15. Matsumoto S. Effects of ammonia and histamine on lung irritant receptors in the rabbit. Respir Physiol. 1989 Sep;77(3):301–308. doi: 10.1016/0034-5687(89)90118-7. [DOI] [PubMed] [Google Scholar]
  16. Meeseen N. E., van der Grinten C. P., Folgering H. T., Luijendijk S. C. Histamine-induced end-tidal inspiratory activity and lung receptors in cats. Eur Respir J. 1995 Dec;8(12):2094–2103. doi: 10.1183/09031936.95.08122094. [DOI] [PubMed] [Google Scholar]
  17. Meessen N. E., van der Grinten C. P., Folgering H. T., Luijendijk S. C. Tonic activity in inspiratory muscles during continuous negative airway pressure. Respir Physiol. 1993 May;92(2):151–166. doi: 10.1016/0034-5687(93)90035-9. [DOI] [PubMed] [Google Scholar]
  18. Meessen N. E., van der Grinten C. P., Luijendijk S. C., Folgering H. T. Continuous negative airway pressure increases tonic activity in diaphragm and intercostal muscles in humans. J Appl Physiol (1985) 1994 Sep;77(3):1256–1262. doi: 10.1152/jappl.1994.77.3.1256. [DOI] [PubMed] [Google Scholar]
  19. Meessen N. E., van der Grinten C. P., Luijendijk S. C., Folgering H. T. Continuous negative airway pressure increases tonic activity in diaphragm and intercostal muscles in humans. J Appl Physiol (1985) 1994 Sep;77(3):1256–1262. doi: 10.1152/jappl.1994.77.3.1256. [DOI] [PubMed] [Google Scholar]
  20. Mills J. E., Sellick H., Widdicombe J. G. Activity of lung irritant receptors in pulmonary microembolism, anaphylaxis and drug-induced bronchoconstrictions. J Physiol. 1969 Aug;203(2):337–357. doi: 10.1113/jphysiol.1969.sp008867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Muller N., Bryan A. C., Zamel N. Tonic inspiratory muscle activity as a cause of hyperinflation in histamine-induced asthma. J Appl Physiol Respir Environ Exerc Physiol. 1980 Nov;49(5):869–874. doi: 10.1152/jappl.1980.49.5.869. [DOI] [PubMed] [Google Scholar]
  22. Ninane V., Rypens F., Yernault J. C., De Troyer A. Abdominal muscle use during breathing in patients with chronic airflow obstruction. Am Rev Respir Dis. 1992 Jul;146(1):16–21. doi: 10.1164/ajrccm/146.1.16. [DOI] [PubMed] [Google Scholar]
  23. Phillips G. D., Finnerty J. P., Holgate S. T. Comparative protective effect of the inhaled beta 2-agonist salbutamol (albuterol) on bronchoconstriction provoked by histamine, methacholine, and adenosine 5'-monophosphate in asthma. J Allergy Clin Immunol. 1990 Apr;85(4):755–762. doi: 10.1016/0091-6749(90)90195-a. [DOI] [PubMed] [Google Scholar]
  24. Sampson S. R., Vidruk E. H. The nature of the receptor mediating stimulant effects of histamine on rapidly adapting vagal afferents in the lungs. J Physiol. 1979 Feb;287:509–518. doi: 10.1113/jphysiol.1979.sp012673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Scano G., Duranti R., Spinelli A., Gorini M., Lo Conte C., Gigliottie F. Control of breathing in normal subjects and in patients with chronic airflow obstruction. Bull Eur Physiopathol Respir. 1987 May-Jun;23(3):209–216. [PubMed] [Google Scholar]
  26. Shore S. A., Bai T. R., Wang C. G., Martin J. G. Central and local cholinergic components of histamine-induced bronchoconstriction in dogs. J Appl Physiol (1985) 1985 Feb;58(2):443–451. doi: 10.1152/jappl.1985.58.2.443. [DOI] [PubMed] [Google Scholar]
  27. Siafakas N. M., Chang H. K., Bonora M., Gautier H., Milic-Emili J., Duron B. Time course of phrenic activity and respiratory pressures during airway occlusion in cats. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jul;51(1):99–108. doi: 10.1152/jappl.1981.51.1.99. [DOI] [PubMed] [Google Scholar]
  28. Sieck G. C., Mazar A., Belman M. J. Changes in diaphragmatic EMG spectra during hyperpneic loads. Respir Physiol. 1985 Aug;61(2):137–152. doi: 10.1016/0034-5687(85)90121-5. [DOI] [PubMed] [Google Scholar]
  29. Vidruk E. H., Hahn H. L., Nadel J. A., Sampson S. R. Mechanisms by which histamine stimulates rapidly adapting receptors in dog lungs. J Appl Physiol Respir Environ Exerc Physiol. 1977 Sep;43(3):397–402. doi: 10.1152/jappl.1977.43.3.397. [DOI] [PubMed] [Google Scholar]
  30. Woolcock A. J., Rebuck A. S., Cade J. F., Read J. Lung volume changes in asthma measured concurrently by two methods. Am Rev Respir Dis. 1971 Nov;104(5):703–709. doi: 10.1164/arrd.1971.104.5.703. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES