Abstract
BACKGROUND: In the airway of subjects with cystic fibrosis (CF) the combination of defective cAMP mediated chloride secretion and enhanced sodium absorption leads to dehydration of mucosal mucus and is reflected in an increased trans-epithelial potential difference (PD). The airway secretions may be less viscid and easier to expectorate if sodium (and water) reabsorption is inhibited. METHODS: To evaluate the response to sodium blocking agents, changes in the nasal PD in 20 transgenic CF mice were compared with 14 control mice (MF1 strain) before and after administration of nebulised amiloride and loperamide (both in a concentration of 1 mmol/l). The duration of action for both drugs was also determined after a single inhaled dose of 1 mmol/l for two minutes. RESULTS: The median basal PD was -24 mV in controls and -28 mV in CF mice (p < 0.01). This fell in CF mice after amiloride and loperamide administration by 15 mV and 14 mV, respectively, compared with a decrease of 7 mV and 5.5 mV in controls (p < 0.01). There was no further change in PD when loperamide was given after amiloride. This suggests that loperamide and amiloride may act on sodium absorption via similar mechanisms. Loperamide had a longer duration of action after a single administration than amiloride. CONCLUSION: The administration of amiloride and loperamide reduces the transepithelial potential and inhibits sodium reabsorption in the CF mouse airway. Further studies are required to determine if the more prolonged action of loperamide could be of therapeutic use.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alton E. W., Currie D., Logan-Sinclair R., Warner J. O., Hodson M. E., Geddes D. M. Nasal potential difference: a clinical diagnostic test for cystic fibrosis. Eur Respir J. 1990 Sep;3(8):922–926. [PubMed] [Google Scholar]
- App E. M., King M., Helfesrieder R., Köhler D., Matthys H. Acute and long-term amiloride inhalation in cystic fibrosis lung disease. A rational approach to cystic fibrosis therapy. Am Rev Respir Dis. 1990 Mar;141(3):605–612. doi: 10.1164/ajrccm/141.3.605. [DOI] [PubMed] [Google Scholar]
- Boucher R. C., Jr, Bromberg P. A., Gatzy J. T. Airway transepithelial electric potential in vivo: species and regional differences. J Appl Physiol Respir Environ Exerc Physiol. 1980 Jan;48(1):169–176. doi: 10.1152/jappl.1980.48.1.169. [DOI] [PubMed] [Google Scholar]
- Bowler I. M., Kelman B., Worthington D., Littlewood J. M., Watson A., Conway S. P., Smye S. W., James S. L., Sheldon T. A. Nebulised amiloride in respiratory exacerbations of cystic fibrosis: a randomised controlled trial. Arch Dis Child. 1995 Nov;73(5):427–430. doi: 10.1136/adc.73.5.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canessa C. M., Merillat A. M., Rossier B. C. Membrane topology of the epithelial sodium channel in intact cells. Am J Physiol. 1994 Dec;267(6 Pt 1):C1682–C1690. doi: 10.1152/ajpcell.1994.267.6.C1682. [DOI] [PubMed] [Google Scholar]
- Canessa C. M., Schild L., Buell G., Thorens B., Gautschi I., Horisberger J. D., Rossier B. C. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 1994 Feb 3;367(6462):463–467. doi: 10.1038/367463a0. [DOI] [PubMed] [Google Scholar]
- Dorin J. R., Dickinson P., Alton E. W., Smith S. N., Geddes D. M., Stevenson B. J., Kimber W. L., Fleming S., Clarke A. R., Hooper M. L. Cystic fibrosis in the mouse by targeted insertional mutagenesis. Nature. 1992 Sep 17;359(6392):211–215. doi: 10.1038/359211a0. [DOI] [PubMed] [Google Scholar]
- Duc C., Farman N., Canessa C. M., Bonvalet J. P., Rossier B. C. Cell-specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone-responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J Cell Biol. 1994 Dec;127(6 Pt 2):1907–1921. doi: 10.1083/jcb.127.6.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham A., Hasani A., Alton E. W., Martin G. P., Marriott C., Hodson M. E., Clarke S. W., Geddes D. M. No added benefit from nebulized amiloride in patients with cystic fibrosis. Eur Respir J. 1993 Oct;6(9):1243–1248. [PubMed] [Google Scholar]
- Grubb B. R., Vick R. N., Boucher R. C. Hyperabsorption of Na+ and raised Ca(2+)-mediated Cl- secretion in nasal epithelia of CF mice. Am J Physiol. 1994 May;266(5 Pt 1):C1478–C1483. doi: 10.1152/ajpcell.1994.266.5.C1478. [DOI] [PubMed] [Google Scholar]
- Hardcastle J., Hardcastle P. T., Cookson J. Inhibitory actions of loperamide on absorptive processes in rat small intestine. Gut. 1986 Jun;27(6):686–694. doi: 10.1136/gut.27.6.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardcastle J., Hardcastle P. T., Taylor C. J. Loperamide inhibits the enhanced intestinal glucose absorption of cystic fibrosis in vitro. Pediatr Res. 1994 Mar;35(3):354–356. doi: 10.1203/00006450-199403000-00016. [DOI] [PubMed] [Google Scholar]
- Knowles M. R., Church N. L., Waltner W. E., Yankaskas J. R., Gilligan P., King M., Edwards L. J., Helms R. W., Boucher R. C. A pilot study of aerosolized amiloride for the treatment of lung disease in cystic fibrosis. N Engl J Med. 1990 Apr 26;322(17):1189–1194. doi: 10.1056/NEJM199004263221704. [DOI] [PubMed] [Google Scholar]
- Knowles M. R., Clarke L. L., Boucher R. C. Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med. 1991 Aug 22;325(8):533–538. doi: 10.1056/NEJM199108223250802. [DOI] [PubMed] [Google Scholar]
- Knowles M., Gatzy J., Boucher R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med. 1981 Dec 17;305(25):1489–1495. doi: 10.1056/NEJM198112173052502. [DOI] [PubMed] [Google Scholar]
- Knowles M., Gatzy J., Boucher R. Relative ion permeability of normal and cystic fibrosis nasal epithelium. J Clin Invest. 1983 May;71(5):1410–1417. doi: 10.1172/JCI110894. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snouwaert J. N., Brigman K. K., Latour A. M., Iraj E., Schwab U., Gilmour M. I., Koller B. H. A murine model of cystic fibrosis. Am J Respir Crit Care Med. 1995 Mar;151(3 Pt 2):S59–S64. doi: 10.1164/ajrccm/151.3_Pt_2.S59. [DOI] [PubMed] [Google Scholar]
- Snouwaert J. N., Brigman K. K., Latour A. M., Malouf N. N., Boucher R. C., Smithies O., Koller B. H. An animal model for cystic fibrosis made by gene targeting. Science. 1992 Aug 21;257(5073):1083–1088. doi: 10.1126/science.257.5073.1083. [DOI] [PubMed] [Google Scholar]
- Tamaoki J., Sakai N., Isono K., Takizawa T. Inhibition by loperamide of chloride transport across canine cultured tracheal epithelium. Eur J Pharmacol. 1990 Nov 6;190(1-2):255–258. doi: 10.1016/0014-2999(90)94135-k. [DOI] [PubMed] [Google Scholar]
- Tizzano E. F., Buchwald M. Cystic fibrosis: beyond the gene to therapy. J Pediatr. 1992 Mar;120(3):337–349. doi: 10.1016/s0022-3476(05)80895-9. [DOI] [PubMed] [Google Scholar]
- Unal-Maelger O. H., Urbanek R. Stellenwert der Messung der transepithelialen Potentialdifferenz (PD) am respiratorischen Epithel in der Mukoviszidose-Diagnostik. Monatsschr Kinderheilkd. 1988 Feb;136(2):76–80. [PubMed] [Google Scholar]
- Wehner F., Winterhager J. M., Petersen K. U. Naloxone-insensitive transport effects of loperamide in guinea-pig gallbladder epithelium. Eur J Pharmacol. 1990 Mar 27;178(3):333–342. doi: 10.1016/0014-2999(90)90112-j. [DOI] [PubMed] [Google Scholar]
- Welsh M. J., Fick R. B. Cystic fibrosis. J Clin Invest. 1987 Dec;80(6):1523–1526. doi: 10.1172/JCI113237. [DOI] [PMC free article] [PubMed] [Google Scholar]
