Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Jan 10;2(12):973–989. doi: 10.1007/s13238-011-1126-y

Gene therapy: light is finally in the tunnel

Huibi Cao 1, Robert S Molday 2, Jim Hu 1,
PMCID: PMC4728158  PMID: 22231356

Abstract

After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber’s congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adenoassociated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.

Keywords: gene therapy, transgenes, viral vector, non-viral vector, helper-dependent adenoviral vector, adenoassociated virus, lentivirus, cystic fibrosis transmembrane conductance regulator (CFTR), host immune responses

References

  1. Acland G.M., Aguirre G.D., Ray J., Zhang Q., Aleman T.S., Cideciyan A.V., Pearce-Kelling S.E., Anand V., Zeng Y., Maguire A.M., et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28:92–95. doi: 10.1038/ng0501-92. [DOI] [PubMed] [Google Scholar]
  2. Ahmed R., Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996;272:54–60. doi: 10.1126/science.272.5258.54. [DOI] [PubMed] [Google Scholar]
  3. Aiuti A., Cattaneo F., Galimberti S., Benninghoff U., Cassani B., Callegaro L., Scaramuzza S., Andolfi G., Mirolo M., Brigida I., et al. Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med. 2009;360:447–458. doi: 10.1056/NEJMoa0805817. [DOI] [PubMed] [Google Scholar]
  4. Aiuti, A., and Roncarolo, M.G. (2009). Ten years of gene therapy for primary immune deficiencies. Hematology Am Soc Hematol Educ Program, 682–689. [DOI] [PubMed]
  5. Aiuti A., Slavin S., Aker M., Ficara F., Deola S., Mortellaro A., Morecki S., Andolfi G., Tabucchi A., Carlucci F., et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296:2410–2413. doi: 10.1126/science.1070104. [DOI] [PubMed] [Google Scholar]
  6. Alton E.W., Stern M., Farley R., Jaffe A., Chadwick S.L., Phillips J., Davies J., Smith S.N., Browning J., Davies M.G., et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet. 1999;353:947–954. doi: 10.1016/s0140-6736(98)06532-5. [DOI] [PubMed] [Google Scholar]
  7. Arcasoy S.M., Latoche J., Gondor M., Watkins S.C., Henderson R. A., Hughey R., Finn O.J., Pilewski J.M. MUC1 and other sialoglycoconjugates inhibit adenovirus-mediated gene transfer to epithelial cells. Am J Respir Cell Mol Biol. 1997;17:422–435. doi: 10.1165/ajrcmb.17.4.2714. [DOI] [PubMed] [Google Scholar]
  8. Aronow B.J., Silbiger R.N., Dusing M.R., Stock J.L., Yager K.L., Potter S.S., Hutton J.J., Wiginton D.A. Functional analysis of the human adenosine deaminase gene thymic regulatory region and its ability to generate position-independent transgene expression. Mol Cell Biol. 1992;12:4170–4185. doi: 10.1128/mcb.12.9.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ashtari M., Cyckowski L.L., Monroe J.F., Marshall K.A., Chung D. C., Auricchio A., Simonelli F., Leroy B.P., Maguire A.M., Shindler K.S., et al. The human visual cortex responds to gene therapy-mediated recovery of retinal function. J Clin Invest. 2011;121:2160–2168. doi: 10.1172/JCI57377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bainbridge J.W., Smith A.J., Barker S.S., Robbie S., Henderson R., Balaggan K., Viswanathan A., Holder G.E., Stockman A., Tyler N., et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–2239. doi: 10.1056/NEJMoa0802268. [DOI] [PubMed] [Google Scholar]
  11. Baldwin A.S., Jr. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol. 1996;14:649–683. doi: 10.1146/annurev.immunol.14.1.649. [DOI] [PubMed] [Google Scholar]
  12. Bals R., Xiao W., Sang N., Weiner D.J., Meegalla R.L., Wilson J.M. Transduction of well-differentiated airway epithelium by recombinant adeno-associated virus is limited by vector entry. J Virol. 1999;73:6085–6088. doi: 10.1128/jvi.73.7.6085-6088.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Barnett B.G., Crews C.J., Douglas J.T. Targeted adenoviral vectors. Biochim Biophys Acta. 2002;1575:1–14. doi: 10.1016/s0167-4781(02)00249-x. [DOI] [PubMed] [Google Scholar]
  14. Barquinero J., Eixarch H., Pérez-Melgosa M. Retroviral vectors: new applications for an old tool. Gene Ther. 2004;11:S3–S9. doi: 10.1038/sj.gt.3302363. [DOI] [PubMed] [Google Scholar]
  15. Barquinero J., Segovia J.C., Ramírez M., Limón A., Güenechea G., Puig T., Briones J., García J., Bueren J.A. Efficient transduction of human hematopoietic repopulating cells generating stable engraftment of transgene-expressing cells in NOD/SCID mice. Blood. 2000;95:3085–3093. [PubMed] [Google Scholar]
  16. Bauer T.R., Jr, Miller A.D., Hickstein D.D. Improved transfer of the leukocyte integrin CD18 subunit into hematopoietic cell lines by using retroviral vectors having a gibbon ape leukemia virus envelope. Blood. 1995;86:2379–2387. [PubMed] [Google Scholar]
  17. Baum C., Hegewisch-Becker S., Eckert H.G., Stocking C., Ostertag W. Novel retroviral vectors for efficient expression of the multidrug resistance (mdr-1) gene in early hematopoietic cells. J Virol. 1995;69:7541–7547. doi: 10.1128/jvi.69.12.7541-7547.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bellon G., Michel-Calemard L., Thouvenot D., Jagneaux V., Poitevin F., Malcus C., Accart N., Layani M.P., Aymard M., Bernon H., et al. Aerosol administration of a recombinant adenovirus expressing CFTR to cystic fibrosis patients: a phase I clinical trial. Hum Gene Ther. 1997;8:15–25. doi: 10.1089/hum.1997.8.1-15. [DOI] [PubMed] [Google Scholar]
  19. Benihoud K., Yeh P., Perricaudet M. Adenovirus vectors for gene delivery. Curr Opin Biotechnol. 1999;10:440–447. doi: 10.1016/s0958-1669(99)00007-5. [DOI] [PubMed] [Google Scholar]
  20. Berclaz P.Y., Zsengellér Z., Shibata Y., Otake K., Strasbaugh S., Whitsett J.A., Trapnell B.C. Endocytic internalization of adenovirus, nonspecific phagocytosis, and cytoskeletal organization are coordinately regulated in alveolar macrophages by GMCSF and PU.1. J Immunol. 2002;169:6332–6342. doi: 10.4049/jimmunol.169.11.6332. [DOI] [PubMed] [Google Scholar]
  21. Berns K.I., Giraud C. Biology of adeno-associated virus. Curr Top Microbiol Immunol. 1996;218:1–23. doi: 10.1007/978-3-642-80207-2_1. [DOI] [PubMed] [Google Scholar]
  22. Blankinship M.J., Gregorevic P., Allen J.M., Harper S.Q., Harper H., Halbert C.L., Miller A.D., Chamberlain J.S. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther. 2004;10:671–678. doi: 10.1016/j.ymthe.2004.07.016. [DOI] [PubMed] [Google Scholar]
  23. Bodine D.M., Seidel N.E., Orlic D. Bone marrow collected 14 days after in vivo administration of granulocyte colonystimulating factor and stem cell factor to mice has 10-fold more repopulating ability than untreated bone marrow. Blood. 1996;88:89–97. [PubMed] [Google Scholar]
  24. Boothroyd J.C., Cross G.A. Transcripts coding for variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5′ end. Gene. 1982;20:281–289. doi: 10.1016/0378-1119(82)90046-4. [DOI] [PubMed] [Google Scholar]
  25. Borgland S.L., Bowen G.P., Wong N.C., Libermann T.A., Muruve D.A. Adenovirus vector-induced expression of the C-X-C chemokine IP-10 is mediated through capsid-dependent activation of NF-kappaB. J Virol. 2000;74:3941–3947. doi: 10.1128/jvi.74.9.3941-3947.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Boucher R.C. Human airway ion transport. Part two. Am J Respir Crit Care Med. 1994;150:581–593. doi: 10.1164/ajrccm.150.2.8049852. [DOI] [PubMed] [Google Scholar]
  27. Boucher R.C. Status of gene therapy for cystic fibrosis lung disease. J Clin Invest. 1999;103:441–445. doi: 10.1172/JCI6330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Boucher R.C., Stutts M.J., Knowles M.R., Cantley L., Gatzy J. T. Na + transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation. J Clin Invest. 1986;78:1245–1252. doi: 10.1172/JCI112708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Bragonzi A., Dina G., Villa A., Calori G., Biffi A., Bordignon C., Assael B.M., Conese M. Biodistribution and transgene expression with nonviral cationic vector/DNA complexes in the lungs. Gene Ther. 2000;7:1753–1760. doi: 10.1038/sj.gt.3301282. [DOI] [PubMed] [Google Scholar]
  30. Brunetti-Pierri N., Palmer D.J., Beaudet A.L., Carey K.D., Finegold M., Ng P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther. 2004;15:35–46. doi: 10.1089/10430340460732445. [DOI] [PubMed] [Google Scholar]
  31. Cao H., Koehler D.R., Hu J. Adenoviral vectors for gene replacement therapy. Viral Immunol. 2004;17:327–333. doi: 10.1089/vim.2004.17.327. [DOI] [PubMed] [Google Scholar]
  32. Cao H., Yang T., Li X.F., Wu J., Duan C., Coates A.L., Hu J. Readministration of helper-dependent adenoviral vectors to mouse airway mediated via transient immunosuppression. Gene Ther. 2011;18:173–181. doi: 10.1038/gt.2010.125. [DOI] [PubMed] [Google Scholar]
  33. Cao H.B., Wang A., Martin B., Koehler D.R., Zeitlin P.L., Tanawell A.K., Hu J. Down-regulation of IL-8 expression in human airway epithelial cells through helper-dependent adenoviral-mediated RNA interference. Cell Res. 2005;15:111–119. doi: 10.1038/sj.cr.7290275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Caplen N.J., Alton E.W., Middleton P.G., Dorin J.R., Stevenson B. J., Gao X., Durham S.R., Jeffery P.K., Hodson M.E., Coutelle C., et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med. 1995;1:39–46. doi: 10.1038/nm0195-39. [DOI] [PubMed] [Google Scholar]
  35. Carter B.J. Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther. 2004;10:981–989. doi: 10.1016/j.ymthe.2004.09.011. [DOI] [PubMed] [Google Scholar]
  36. Cavazzana-Calvo M., Hacein-Bey S., de Saint Basile G., Gross F., Yvon E., Nusbaum P., Selz F., Hue C., Certain S., Casanova J. L., et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288:669–672. doi: 10.1126/science.288.5466.669. [DOI] [PubMed] [Google Scholar]
  37. Challita P.M., Skelton D., el-Khoueiry A., Yu X.J., Weinberg K., Kohn D.B. Multiple modifications in cis elements of the long terminal repeat of retroviral vectors lead to increased expression and decreased DNA methylation in embryonic carcinoma cells. J Virol. 1995;69:748–755. doi: 10.1128/jvi.69.2.748-755.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Chow Y.H., O’Brodovich H., Plumb J., Wen Y., Sohn K.J., Lu Z., Zhang F., Lukacs G.L., Tanswell A.K., Hui C.C., et al. Development of an epithelium-specific expression cassette with human DNA regulatory elements for transgene expression in lung airways. Proc Natl Acad Sci U S A. 1997;94:14695–14700. doi: 10.1073/pnas.94.26.14695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Chow Y.H., Plumb J., Wen Y., Steer B.M., Lu Z., Buchwald M., Hu J. Targeting transgene expression to airway epithelia and submucosal glands, prominent sites of human CFTR expression. Mol Ther. 2000;2:359–367. doi: 10.1006/mthe.2000.0135. [DOI] [PubMed] [Google Scholar]
  40. Chu Q., St George J.A., Lukason M., Cheng S.H., Scheule R.K., Eastman S.J. EGTA enhancement of adenovirusmediated gene transfer to mouse tracheal epithelium in vivo. Hum Gene Ther. 2001;12:455–467. doi: 10.1089/104303401300042348. [DOI] [PubMed] [Google Scholar]
  41. Cideciyan A.V. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog Retin Eye Res. 2010;29:398–427. doi: 10.1016/j.preteyeres.2010.04.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Cideciyan A.V., Aleman T.S., Boye S.L., Schwartz S.B., Kaushal S., Roman A.J., Pang J.J., Sumaroka A., Windsor E.A., Wilson J.M., et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A. 2008;105:15112–15117. doi: 10.1073/pnas.0807027105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Copreni E., Penzo M., Carrabino S., Conese M. Lentivirus-mediated gene transfer to the respiratory epithelium: a promising approach to gene therapy of cystic fibrosis. Gene Ther. 2004;11:S67–S75. doi: 10.1038/sj.gt.3302372. [DOI] [PubMed] [Google Scholar]
  44. Crystal R. G., McElvaney N. G., Rosenfeld M. A., Chu C. S., Mastrangeli A., Hay J. G., Brody S. L., Jaffe H. A., Eissa N. T., Danel C. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet. 1994;8:42–51. doi: 10.1038/ng0994-42. [DOI] [PubMed] [Google Scholar]
  45. Dai Y., Schwarz E.M., Gu D., Zhang W.W., Sarvetnick N., Verma I.M. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression. Proc Natl Acad Sci U S A. 1995;92:1401–1405. doi: 10.1073/pnas.92.5.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Duan D., Yue Y., Engelhardt J.F. Expanding AAV packaging capacity with trans-splicing or overlapping vectors: a quantitative comparison. Mol Ther. 2001;4:383–391. doi: 10.1006/mthe.2001.0456. [DOI] [PubMed] [Google Scholar]
  47. Dunbar C.E., Seidel N.E., Doren S., Sellers S., Cline A.P., Metzger M.E., Agricola B.A., Donahue R.E., Bodine D.M. Improved retroviral gene transfer into murine and Rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor. Proc Natl Acad Sci U S A. 1996;93:11871–11876. doi: 10.1073/pnas.93.21.11871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Ehrhardt A., Xu H., Kay M.A. Episomal persistence of recombinant adenoviral vector genomes during the cell cycle in vivo. J Virol. 2003;77:7689–7695. doi: 10.1128/JVI.77.13.7689-7695.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Evans J.T., Kelly P.F., O’Neill E., Garcia J.V. Human cord blood CD34 + CD38-cell transduction via lentivirus-based gene transfer vectors. Hum Gene Ther. 1999;10:1479–1489. doi: 10.1089/10430349950017815. [DOI] [PubMed] [Google Scholar]
  50. Fearon D.T., Locksley R.M. The instructive role of innate immunity in the acquired immune response. Science. 1996;272:50–53. doi: 10.1126/science.272.5258.50. [DOI] [PubMed] [Google Scholar]
  51. Ferrari S., Griesenbach U., Iida A., Farley R., Wright A.M., Zhu J., Munkonge F.M., Smith S.N., You J., Ban H., et al. Sendai virus-mediated CFTR gene transfer to the airway epithelium. Gene Ther. 2007;14:1371–1379. doi: 10.1038/sj.gt.3302991. [DOI] [PubMed] [Google Scholar]
  52. Ferrari S., Griesenbach U., Shiraki-Iida T., Shu T., Hironaka T., Hou X., Williams J., Zhu J., Jeffery P.K., Geddes D.M., et al. A defective nontransmissible recombinant Sendai virus mediates efficient gene transfer to airway epithelium in vivo. Gene Ther. 2004;11:1659–1664. doi: 10.1038/sj.gt.3302334. [DOI] [PubMed] [Google Scholar]
  53. Flotte T.R., Ng P., Dylla D.E., McCray P.B., Jr, Wang G., Kolls J.K., Hu J. Viral vector-mediated and cell-based therapies for treatment of cystic fibrosis. Mol Ther. 2007;15:229–241. doi: 10.1038/sj.mt.6300002. [DOI] [PubMed] [Google Scholar]
  54. Forsayeth J.R., Bankiewicz K.S. AAV9: over the fence and into the woods... Mol Ther. 2011;19:1006–1007. doi: 10.1038/mt.2011.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Gao G.P., Alvira M.R., Wang L., Calcedo R., Johnston J., Wilson J.M. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A. 2002;99:11854–11859. doi: 10.1073/pnas.182412299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Gaspar H.B., Parsley K.L., Howe S., King D., Gilmour K.C., Sinclair J., Brouns G., Schmidt M., Von Kalle C., Barington T., et al. Gene therapy of X-linked severe combined immunode-ficiency by use of a pseudotyped gammaretroviral vector. Lancet. 2004;364:2181–2187. doi: 10.1016/S0140-6736(04)17590-9. [DOI] [PubMed] [Google Scholar]
  57. Gill D.R., Bazzani R.P., Hyde S.C. Strategies for longterm expression of transgenes in the respiratory epithelium. Curr Opin Mol Ther. 2010;12:386–393. [PubMed] [Google Scholar]
  58. Glimm H., Eaves C.J. Direct evidence for multiple selfrenewal divisions of human in vivo repopulating hematopoietic cells in short-term culture. Blood. 1999;94:2161–2168. [PubMed] [Google Scholar]
  59. Glorioso J.C., Goins W.F., DeLuca N., Fink D.J. Development of herpes simplex virus as a gene transfer vector for the nervous system. Gene Ther. 1994;1:S39. [PubMed] [Google Scholar]
  60. Grubb B.R., Pickles R.J., Ye H., Yankaskas J.R., Vick R.N., Engelhardt J.F., Wilson J.M., Johnson L.G., Boucher R.C. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans. Nature. 1994;371:802–806. doi: 10.1038/371802a0. [DOI] [PubMed] [Google Scholar]
  61. Guilbault C., Saeed Z., Downey G.P., Radzioch D. Cystic fibrosis mouse models. Am J Respir Cell Mol Biol. 2007;36:1–7. doi: 10.1165/rcmb.2006-0184TR. [DOI] [PubMed] [Google Scholar]
  62. Hacein-Bey-Abina S., Von Kalle C., Schmidt M., McCormack M.P., Wulffraat N., Leboulch P., Lim A., Osborne C.S., Pawliuk R., Morillon E., et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–419. doi: 10.1126/science.1088547. [DOI] [PubMed] [Google Scholar]
  63. Hanenberg H., Xiao X.L., Dilloo D., Hashino K., Kato I., Williams D.A. Colocalization of retrovirus and target cells on specific fibronectin fragments increases genetic transduction of mammalian cells. Nat Med. 1996;2:876–882. doi: 10.1038/nm0896-876. [DOI] [PubMed] [Google Scholar]
  64. Hargrove P.W., Vanin E.F., Kurtzman G.J., Nienhuis A.W. High-level globin gene expression mediated by a recombinant adeno-associated virus genome that contains the 3′ gamma globin gene regulatory element and integrates as tandem copies in erythroid cells. Blood. 1997;89:2167–2175. [PubMed] [Google Scholar]
  65. Harvey B. G., Leopold P. L., Hackett N. R., Grasso T. M., Williams P. M., Tucker A. L., Kaner R. J., Ferris B., Gonda I., Sweeney T. D., et al. Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus. J Clin Invest. 1999;104:1245–1255. doi: 10.1172/JCI7935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Hennemann B., Conneally E., Pawliuk R., Leboulch P., Rose-John S., Reid D., Chuo J.Y., Humphries R.K., Eaves C.J. Optimization of retroviral-mediated gene transfer to human NOD/ SCID mouse repopulating cord blood cells through a systematic analysis of protocol variables. Exp Hematol. 1999;27:817–825. doi: 10.1016/s0301-472x(99)00021-1. [DOI] [PubMed] [Google Scholar]
  67. Herzog R.W., Cao O., Srivastava A. Two decades of clinical gene therapy—success is finally mounting. Discov Med. 2010;9:105–111. [PMC free article] [PubMed] [Google Scholar]
  68. Hirsch M.L., Agbandje-McKenna M., Samulski R.J. Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther. 2010;18:6–8. doi: 10.1038/mt.2009.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Huang X., Yang Y. Innate immune recognition of viruses and viral vectors. Hum Gene Ther. 2009;20:293–301. doi: 10.1089/hum.2008.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Hyde S.C., Pringle I.A., Abdullah S., Lawton A.E., Davies L.A., Varathalingam A., Nunez-Alonso G., Green A.M., Bazzani R.P., Sumner-Jones S.G., et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol. 2008;26:549–551. doi: 10.1038/nbt1399. [DOI] [PubMed] [Google Scholar]
  71. Hyde S.C., Southern K.W., Gileadi U., Fitzjohn E.M., Mofford K.A., Waddell B.E., Gooi H.C., Goddard C.A., Hannavy K., Smyth S. E., et al. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 2000;7:1156–1165. doi: 10.1038/sj.gt.3301212. [DOI] [PubMed] [Google Scholar]
  72. Jiang Z., Feingold E., Kochanek S., Clemens P.R. Systemic delivery of a high-capacity adenoviral vector expressing mouse CTLA4Ig improves skeletal muscle gene therapy. Mol Ther. 2002;6:369–376. doi: 10.1006/mthe.2002.0676. [DOI] [PubMed] [Google Scholar]
  73. Jornot L., Petersen H., Lusky M., Pavirani A., Moix I., Morris, Rochat T. Effects of first generation E1E3-deleted and second generation E1E3E4-deleted/modified adenovirus vectors on human endothelial cell death. Endothelium. 2001;8:167–179. doi: 10.1080/10623320109051563. [DOI] [PubMed] [Google Scholar]
  74. Joseph P. M., O’sullivan B. P., Lapey A., Dorkin H., Oren J., Balfour R., Perricone M. A., Rosenberg M., Wadsworth S. C., Smith A. E., et al. Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. I. Methods, safety, and clinical implications. Hum Gene Ther. 2001;12:1369–1382. doi: 10.1089/104303401750298535. [DOI] [PubMed] [Google Scholar]
  75. Kafri T., Morgan D., Krahl T., Sarvetnick N., Sherman L., Verma I. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy. Proc Natl Acad Sci U S A. 1998;95:11377–11382. doi: 10.1073/pnas.95.19.11377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Kalberer C.P., Pawliuk R., Imren S., Bachelot T., Takekoshi K.J., Fabry M., Eaves C.J., London I.M., Humphries R.K., Leboulch P. Preselection of retrovirally transduced bone marrow avoids subsequent stem cell gene silencing and agedependent extinction of expression of human beta-globin in engrafted mice. Proc Natl Acad Sci U S A. 2000;97:5411–5415. doi: 10.1073/pnas.100082597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Kaplan J.M., Pennington S.E., St George J.A., Woodworth L.A., Fasbender A., Marshall J., Cheng S.H., Wadsworth S.C., Gregory R.J., Smith A.E. Potentiation of gene transfer to the mouse lung by complexes of adenovirus vector and polycations improves therapeutic potential. Hum Gene Ther. 1998;9:1469–1479. doi: 10.1089/hum.1998.9.10-1469. [DOI] [PubMed] [Google Scholar]
  78. Kay M.A., Holterman A.X., Meuse L., Gown A., Ochs H.D., Linsley P.S., Wilson C.B. Long-term hepatic adenovirusmediated gene expression in mice following CTLA4Ig administration. Nat Genet. 1995;11:191–197. doi: 10.1038/ng1095-191. [DOI] [PubMed] [Google Scholar]
  79. Kearns W.G., Afione S.A., Fulmer S.B., Pang M.C., Erikson D., Egan M., Landrum M.J., Flotte T.R., Cutting G.R. Recombinant adeno-associated virus (AAV-CFTR) vectors do not integrate in a site-specific fashion in an immortalized epithelial cell line. Gene Ther. 1996;3:748–755. [PubMed] [Google Scholar]
  80. Kim I.H., Józkowicz A., Piedra P.A., Oka K., Chan L. Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci U S A. 2001;98:13282–13287. doi: 10.1073/pnas.241506298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Knowles M.R., Hohneker K.W., Zhou Z., Olsen J.C., Noah T.L., Hu P.C., Leigh M.W., Engelhardt J.F., Edwards L.J., Jones K.R., et al. A controlled study of adenoviral-vector-mediated gene transfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med. 1995;333:823–831. doi: 10.1056/NEJM199509283331302. [DOI] [PubMed] [Google Scholar]
  82. Koehler D.R., Frndova H., Leung K., Louca E., Palmer D., Ng P., McKerlie C., Cox P., Coates A.L., Hu J. Aerosol delivery of an enhanced helper-dependent adenovirus formulation to rabbit lung using an intratracheal catheter. J Gene Med. 2005;7:1409–1420. doi: 10.1002/jgm.797. [DOI] [PubMed] [Google Scholar]
  83. Koehler D.R., Hannam V., Belcastro R., Steer B., Wen Y., Post M., Downey G., Tanswell A.K., Hu J. Targeting transgene expression for cystic fibrosis gene therapy. Mol Ther. 2001;4:58–65. doi: 10.1006/mthe.2001.0412. [DOI] [PubMed] [Google Scholar]
  84. Koehler D.R., Hitt M.M., Hu J. Challenges and strategies for cystic fibrosis lung gene therapy. Mol Ther. 2001;4:84–91. doi: 10.1006/mthe.2001.0435. [DOI] [PubMed] [Google Scholar]
  85. Koehler D.R., Sajjan U., Chow Y.H., Martin B., Kent G., Tanswell A.K., McKerlie C., Forstner J.F., Hu J. Protection of Cftr knockout mice from acute lung infection by a helper-dependent adenoviral vector expressing Cftr in airway epithelia. Proc Natl Acad Sci U S A. 2003;100:15364–15369. doi: 10.1073/pnas.2436478100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Koenig M., Hoffman E.P., Bertelson C.J., Monaco A.P., Feener C., Kunkel L.M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell. 1987;50:509–517. doi: 10.1016/0092-8674(87)90504-6. [DOI] [PubMed] [Google Scholar]
  87. Kojaoghlanian T., Flomenberg P., Horwitz M.S. The impact of adenovirus infection on the immunocompromised host. Rev Med Virol. 2003;13:155–171. doi: 10.1002/rmv.386. [DOI] [PubMed] [Google Scholar]
  88. Kollen J., Mulberg A.E., Wei X., Sugita M., Raghuram V., Wang J., Foskett J.K., Glick M.C., Scanlin T.F. Highefficiency transfer of cystic fibrosis transmembrane conductance regulator cDNA into cystic fibrosis airway cells in culture using lactosylated polylysine as a vector. Hum Gene Ther. 1999;10:615–622. doi: 10.1089/10430349950018689. [DOI] [PubMed] [Google Scholar]
  89. Kotin R.M., Siniscalco M., Samulski R.J., Zhu X.D., Hunter L., Laughlin C.A., McLaughlin S., Muzyczka N., Rocchi M., Berns K.I. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci U S A. 1990;87:2211–2215. doi: 10.1073/pnas.87.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Kushwah R., Oliver J.R., Cao H., Hu J. Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways. Gene Ther. 2007;14:1243–1248. doi: 10.1038/sj.gt.3302968. [DOI] [PubMed] [Google Scholar]
  91. Lee B.H., Kushwah R., Wu J., Ng P., Palaniyar N., Grinstein S., Philpott D.J., Hu J. Adenoviral vectors stimulate innate immune responses in macrophages through cross-talk with epithelial cells. Immunol Lett. 2010;134:93–102. doi: 10.1016/j.imlet.2010.09.003. [DOI] [PubMed] [Google Scholar]
  92. Li X., Li W., Dai X., Kong F., Zheng Q., Zhou X., Lü F., Chang B., Rohrer B., Hauswirth W.W., et al. Gene therapy rescues cone structure and function in the 3-month-old rd12 mouse: a model for midcourse RPE65 leber congenital amaurosis. Invest Ophthalmol Vis Sci. 2011;52:7–15. doi: 10.1167/iovs.10-6138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Liang X.H., Haritan A., Uliel S., Michaeli S. trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell. 2003;2:830–840. doi: 10.1128/EC.2.5.830-840.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Limberis M., Anson D.S., Fuller M., Parsons D.W. Recovery of airway cystic fibrosis transmembrane conductance regulator function in mice with cystic fibrosis after single-dose lentivirus-mediated gene transfer. Hum Gene Ther. 2002;13:1961–1970. doi: 10.1089/10430340260355365. [DOI] [PubMed] [Google Scholar]
  95. Mack C.A., Song W.R., Carpenter H., Wickham T.J., Kovesdi I., Harvey B.G., Magovern C.J., Isom O.W., Rosengart T., Falck-Pedersen E., et al. Circumvention of anti-adenovirus neutralizing immunity by administration of an adenoviral vector of an alternate serotype. Hum Gene Ther. 1997;8:99–109. doi: 10.1089/hum.1997.8.1-99. [DOI] [PubMed] [Google Scholar]
  96. Maguire A.M., Simonelli F., Pierce E.A., Pugh E.N., Jr, Mingozzi F., Bennicelli J., Banfi S., Marshall K.A., Testa F., Surace E.M., et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–2248. doi: 10.1056/NEJMoa0802315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Maione D., Della Rocca C., Giannetti P., D’Arrigo R., Liberatoscioli L., Franlin L.L., Sandig V., Ciliberto G., La Monica N., Savino R. An improved helper-dependent adenoviral vector allows persistent gene expression after intramuscular delivery and overcomes preexisting immunity to adenovirus. Proc Natl Acad Sci U S A. 2001;98:5986–5991. doi: 10.1073/pnas.101122498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Mastrangeli A., Harvey B.G., Yao J., Wolff G., Kovesdi I., Crystal R.G., Falck-Pedersen E. “Sero-switch” adenovirusmediated in vivo gene transfer: circumvention of anti-adenovirus humoral immune defenses against repeat adenovirus vector administration by changing the adenovirus serotype. Hum Gene Ther. 1996;7:79–87. doi: 10.1089/hum.1996.7.1-79. [DOI] [PubMed] [Google Scholar]
  99. Mátrai J., Chuah M.K., Vanden Driessche T. Recent advances in lentiviral vector development and applications. Mol Ther. 2010;18:477–490. doi: 10.1038/mt.2009.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Matsushima K., Morishita K., Yoshimura T., Lavu S., Kobayashi Y., Lew W., Appella E., Kung H.F., Leonard E.J., Oppenheim J. J. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med. 1988;167:1883–1893. doi: 10.1084/jem.167.6.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. McCoy R.D., Davidson B.L., Roessler B.J., Huffnagle G.B., Janich S.L., Laing T.J., Simon R.H. Pulmonary inflammation induced by incomplete or inactivated adenoviral particles. Hum Gene Ther. 1995;6:1553–1560. doi: 10.1089/hum.1995.6.12-1553. [DOI] [PubMed] [Google Scholar]
  102. Michou A.I., Santoro L., Christ M., Julliard V., Pavirani A., Mehtali M. Adenovirus-mediated gene transfer: influence of transgene, mouse strain and type of immune response on persistence of transgene expression. Gene Ther. 1997;4:473–482. doi: 10.1038/sj.gt.3300412. [DOI] [PubMed] [Google Scholar]
  103. Moritz T., Dutt P., Xiao X., Carstanjen D., Vik T., Hanenberg H., Williams D.A. Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood. 1996;88:855–862. [PubMed] [Google Scholar]
  104. Morral N., O’Neal W.K., Rice K., Leland M.M., Piedra P.A., Aguilar-Córdova E., Carey K.D., Beaudet A.L., Langston C. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther. 2002;13:143–154. doi: 10.1089/10430340152712692. [DOI] [PubMed] [Google Scholar]
  105. Morsy M.A., Gu M., Motzel S., Zhao J., Lin J., Su Q., Allen H., Franlin L., Parks R.J., Graham F.L., et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci U S A. 1998;95:7866–7871. doi: 10.1073/pnas.95.14.7866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Moss R.B., Rodman D., Spencer L.T., Aitken M.L., Zeitlin P.L., Waltz D., Milla C., Brody A.S., Clancy J.P., Ramsey B., et al. Repeated adeno-associated virus serotype 2 aerosolmediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest. 2004;125:509–521. doi: 10.1378/chest.125.2.509. [DOI] [PubMed] [Google Scholar]
  107. Noone P.G., Hohneker K.W., Zhou Z., Johnson L.G., Foy C., Gipson C., Jones K., Noah T.L., Leigh M.W., Schwartzbach C., et al. Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis. Mol Ther. 2000;1:105–114. doi: 10.1006/mthe.1999.0009. [DOI] [PubMed] [Google Scholar]
  108. ai]O’Neal W.K., Rose E., Zhou H., Langston C., Rice K., Carey D., Beaudet A.L. Multiple advantages of alpha-fetoprotein as a marker for in vivo gene transfer. Mol Ther. 2000;2:640–648. doi: 10.1006/mthe.2000.0198. [DOI] [PubMed] [Google Scholar]
  109. Oshima R.G., Abrams L., Kulesh D. Activation of an intron enhancer within the keratin 18 gene by expression of c-fos and c-jun in undifferentiated F9 embryonal carcinoma cells. Genes Dev. 1990;4:835–848. doi: 10.1101/gad.4.5.835. [DOI] [PubMed] [Google Scholar]
  110. Overbaugh J., Miller A.D., Eiden M.V. Receptors and entry cofactors for retroviruses include single and multiple transmembrane-spanning proteins as well as newly described glycophosphatidylinositol-anchored and secreted proteins. [table of contents.] Microbiol Mol Biol Rev. 2001;65:371–389. doi: 10.1128/MMBR.65.3.371-389.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Palmer D., Ng P. Improved system for helper-dependent adenoviral vector production. Mol Ther. 2003;8:846–852. doi: 10.1016/j.ymthe.2003.08.014. [DOI] [PubMed] [Google Scholar]
  112. Parks R.J. Improvements in adenoviral vector technology: overcoming barriers for gene therapy. Clin Genet. 2000;58:1–11. doi: 10.1034/j.1399-0004.2000.580101.x. [DOI] [PubMed] [Google Scholar]
  113. Pearson H. Human genetics: One gene, twenty years. Nature. 2009;460:164–169. doi: 10.1038/460164a. [DOI] [PubMed] [Google Scholar]
  114. Pergolizzi R.G., Crystal R.G. Genetic medicine at the RNA level: modifications of the genetic repertoire for therapeutic purposes by pre-mRNA trans-splicing. C R Biol. 2004;327:695–709. doi: 10.1016/j.crvi.2004.05.008. [DOI] [PubMed] [Google Scholar]
  115. Perricone M. A., Morris J. E., Pavelka K., Plog M. S., O’sullivan B. P., Joseph P. M., Dorkin H., Lapey A., Balfour R., Meeker D. P., et al. Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. II. Transfection efficiency in airway epithelium. Hum Gene Ther. 2001;12:1383–1394. doi: 10.1089/104303401750298544. [DOI] [PubMed] [Google Scholar]
  116. Pickles R.J., Fahrner J.A., Petrella J.M., Boucher R.C., Bergelson J.M. Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J Virol. 2000;74:6050–6057. doi: 10.1128/jvi.74.13.6050-6057.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Porteous D.J., Dorin J.R., McLachlan G., Davidson-Smith H., Davidson H., Stevenson B.J., Carothers A.D., Wallace W.A., Moralee S., Hoenes C., et al. Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 1997;4:210–218. doi: 10.1038/sj.gt.3300390. [DOI] [PubMed] [Google Scholar]
  118. Pringle C.R. Virus taxonomy—1999. The universal system of virus taxonomy, updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998. Arch Virol. 1999;144:421–429. doi: 10.1007/s007050050515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Pupita F., Barone A. Clinical pharmacology of DEAEdextran for long-term administration (one year) Int J Clin Pharmacol Res. 1983;3:287–293. [PubMed] [Google Scholar]
  120. Qin L., Ding Y., Pahud D.R., Chang E., Imperiale M.J., Bromberg J.S. Promoter attenuation in gene therapy: interferon-gamma and tumor necrosis factor-alpha inhibit transgene expression. Hum Gene Ther. 1997;8:2019–2029. doi: 10.1089/hum.1997.8.17-2019. [DOI] [PubMed] [Google Scholar]
  121. Raper S.E., Chirmule N., Lee F.S., Wivel N.A., Bagg A., Gao G.P., Wilson J.M., Batshaw M.L. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80:148–158. doi: 10.1016/j.ymgme.2003.08.016. [DOI] [PubMed] [Google Scholar]
  122. Reich S.J., Auricchio A., Hildinger M., Glover E., Maguire A.M., Wilson J.M., Bennett J. Efficient trans-splicing in the retina expands the utility of adeno-associated virus as a vector for gene therapy. Hum Gene Ther. 2003;14:37–44. doi: 10.1089/10430340360464697. [DOI] [PubMed] [Google Scholar]
  123. Rogers C.S., Stoltz D.A., Meyerholz D.K., Ostedgaard L.S., Rokhlina T., Taft P.J., Rogan M.P., Pezzulo A.A., Karp P.H., Itani O.A., et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science. 2008;321:1837–1841. doi: 10.1126/science.1163600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Rogers S., Moore M. Studies of the mechanism of action of the Shope rabbit papilloma virus. I. Concerning the nature of the induction of arginase in the infected cells. J Exp Med. 1963;117:521–542. doi: 10.1084/jem.117.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Rommens J.M., Iannuzzi M.C., Kerem B., Drumm M.L., Melmer G., Dean M., Rozmahel R., Cole J.L., Kennedy D., Hidaka N., et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science. 1989;245:1059–1065. doi: 10.1126/science.2772657. [DOI] [PubMed] [Google Scholar]
  126. Ruiz F.E., Clancy J.P., Perricone M.A., Bebok Z., Hong J.S., Cheng S.H., Meeker D.P., Young K.R., Schoumacher R.A., Weatherly M.R., et al. A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis. Hum Gene Ther. 2001;12:751–761. doi: 10.1089/104303401750148667. [DOI] [PubMed] [Google Scholar]
  127. Salvi S., Holgate S.T. Could the airway epithelium play an important role in mucosal immunoglobulin A production? Clin Exp Allergy. 1999;29:1597–1605. doi: 10.1046/j.1365-2222.1999.00644.x. [DOI] [PubMed] [Google Scholar]
  128. Scaria A., St George J.A., Gregory R.J., Noelle R.J., Wadsworth S. C., Smith A.E., Kaplan J.M. Antibody to CD40 ligand inhibits both humoral and cellular immune responses to adenoviral vectors and facilitates repeated administration to mouse airway. Gene Ther. 1997;4:611–617. doi: 10.1038/sj.gt.3300431. [DOI] [PubMed] [Google Scholar]
  129. Schaack J., Bennett M.L., Colbert J.D., Torres A.V., Clayton G.H., Ornelles D., Moorhead J. E1A and E1B proteins inhibit inflammation induced by adenovirus. Proc Natl Acad Sci U S A. 2004;101:3124–3129. doi: 10.1073/pnas.0303709101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Schnepp B.C., Clark K.R., Klemanski D.L., Pacak C.A., Johnson P.R. Genetic fate of recombinant adenoassociated virus vector genomes in muscle. J Virol. 2003;77:3495–3504. doi: 10.1128/JVI.77.6.3495-3504.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Singh B., de la Concha-Bermejillo A. Gadolinium chloride removes pulmonary intravascular macrophages and curtails the degree of ovine lentivirus-induced lymphoid interstitial pneumonia. Int J Exp Pathol. 1998;79:151–162. [PubMed] [Google Scholar]
  132. Singhal A., Huang L. Gene transfer in Mammalian using liposomes as carriers. In: Wolff J. A., editor. Gene Therapeutics. Boston: Birkhauser; 1994. pp. 118–142. [Google Scholar]
  133. Sinn P.L., Burnight E.R., McCray P.B., Jr. Progress and prospects: prospects of repeated pulmonary administration of viral vectors. Gene Ther. 2009;16:1059–1065. doi: 10.1038/gt.2009.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Sinn P.L., Hickey M.A., Staber P.D., Dylla D.E., Jeffers S.A., Davidson B.L., Sanders D.A., McCray P.B., Jr. Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. J Virol. 2003;77:5902–5910. doi: 10.1128/JVI.77.10.5902-5910.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Sirninger J., Muller C., Braag S., Tang Q., Yue H., Detrisac C., Ferkol T., Guggino W.B., Flotte T.R. Functional characterization of a recombinant adeno-associated virus 5-pseudotyped cystic fibrosis transmembrane conductance regulator vector. Hum Gene Ther. 2004;15:832–841. doi: 10.1089/hum.2004.15.832. [DOI] [PubMed] [Google Scholar]
  136. Smith A.E. Viral vectors in gene therapy. Annu Rev Microbiol. 1995;49:807–838. doi: 10.1146/annurev.mi.49.100195.004111. [DOI] [PubMed] [Google Scholar]
  137. Smith T., Idamakanti N., Kylefjord H., Rollence M., King L., Kaloss M., Kaleko M., Stevenson S.C. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther. 2002;5:770–779. doi: 10.1006/mthe.2002.0613. [DOI] [PubMed] [Google Scholar]
  138. Snouwaert J.N., Brigman K.K., Latour A.M., Iraj E., Schwab U., Gilmour M.I., Koller B.H. A murine model of cystic fibrosis. Am J Respir Crit Care Med. 1995;151:S59–S64. doi: 10.1164/ajrccm/151.3_Pt_2.S59. [DOI] [PubMed] [Google Scholar]
  139. Spina D. Epithelium smooth muscle regulation and interactions. Am J Respir Crit Care Med. 1998;158:S141–S145. doi: 10.1164/ajrccm.158.supplement_2.13tac100a. [DOI] [PubMed] [Google Scholar]
  140. St George J.A. Gene therapy progress and prospects: adenoviral vectors. Gene Ther. 2003;10:1135–1141. doi: 10.1038/sj.gt.3302071. [DOI] [PubMed] [Google Scholar]
  141. Stein L., Roy K., Lei L., Kaushal S. Clinical gene therapy for the treatment of RPE65-associated Leber congenital amaurosis. Expert Opin Biol Ther. 2011;11:429–439. doi: 10.1517/14712598.2011.557358. [DOI] [PubMed] [Google Scholar]
  142. Stoltz D.A., Meyerholz D.K., Pezzulo A.A., Ramachandran S., Rogan M.P., Davis G.J., Hanfland R.A., Wohlford-Lenane C., Dohrn C.L., Bartlett J.A., et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2010;2:29ra31. doi: 10.1126/scitranslmed.3000928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Summerford C., Samulski R.J. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol. 1998;72:1438–1445. doi: 10.1128/jvi.72.2.1438-1445.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Sung R.S., Qin L., Bromberg J.S. TNFalpha and IFNgamma induced by innate anti-adenoviral immune responses inhibit adenovirus-mediated transgene expression. Mol Ther. 2001;3:757–767. doi: 10.1006/mthe.2001.0318. [DOI] [PubMed] [Google Scholar]
  145. Suzuki H., Kurihara Y., Takeya M., Kamada N., Kataoka M., Jishage K., Ueda O., Sakaguchi H., Higashi T., Suzuki T., et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature. 1997;386:292–296. doi: 10.1038/386292a0. [DOI] [PubMed] [Google Scholar]
  146. Terheggen H.G., Lowenthal A., Lavinha F., Colombo J.P., Rogers S. Unsuccessful trial of gene replacement in arginase deficiency. Z Kinderheilkd. 1975;119:1–3. doi: 10.1007/BF00464689. [DOI] [PubMed] [Google Scholar]
  147. Thepen T., McMenamin C., Oliver J., Kraal G., Holt P.G. Regulation of immune response to inhaled antigen by alveolar macrophages: differential effects of in vivo alveolar macrophage elimination on the induction of tolerance vs. immunity. Eur J Immunol. 1991;21:2845–2850. doi: 10.1002/eji.1830211128. [DOI] [PubMed] [Google Scholar]
  148. Toietta G., Koehler D.R., Finegold M.J., Lee B., Hu J., Beaudet A.L. Reduced inflammation and improved airway expression using helper-dependent adenoviral vectors with a K18 promoter. Mol Ther. 2003;7:649–658. doi: 10.1016/s1525-0016(03)00059-5. [DOI] [PubMed] [Google Scholar]
  149. Tripathy S.K., Black H.B., Goldwasser E., Leiden J.M. Immune responses to transgene-encoded proteins limit the stability of gene expression after injection of replication-defective adenovirus vectors. Nat Med. 1996;2:545–550. doi: 10.1038/nm0596-545. [DOI] [PubMed] [Google Scholar]
  150. Tsui L.C. The cystic fibrosis transmembrane conductance regulator gene. Am J Respir Crit Care Med. 1995;151:S47–S53. doi: 10.1164/ajrccm/151.3_Pt_2.S47. [DOI] [PubMed] [Google Scholar]
  151. van der Loo J.C., Liu B.L., Goldman A.I., Buckley S.M., Chrudimsky K.S. Optimization of gene transfer into primitive human hematopoietic cells of granulocyte-colony stimulating factor-mobilized peripheral blood using low-dose cytokines and comparison of a gibbon ape leukemia virus versus an RD114-pseudotyped retroviral vector. Hum Gene Ther. 2002;13:1317–1330. doi: 10.1089/104303402760128540. [DOI] [PubMed] [Google Scholar]
  152. Veena P., Traycoff C.M., Williams D.A., McMahel J., Rice S., Cornetta K., Srour E.F. Delayed targeting of cytokinenonresponsive human bone marrow CD34(+) cells with retrovirusmediated gene transfer enhances transduction efficiency and longterm expression of transduced genes. Blood. 1998;91:3693–3701. [PubMed] [Google Scholar]
  153. Waddington S.N., McVey J.H., Bhella D., Parker A.L., Barker K., Atoda H., Pink R., Buckley S.M., Greig J.A., Denby L., et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell. 2008;132:397–409. doi: 10.1016/j.cell.2008.01.016. [DOI] [PubMed] [Google Scholar]
  154. Wagner J.A., Messner A.H., Moran M.L., Daifuku R., Kouyama K., Desch J.K., Manley S., Norbash A.M., Conrad C.K., Friborg S., et al. Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAVCFTR) in the cystic fibrosis maxillary sinus. Laryngoscope. 1999;109:266–274. doi: 10.1097/00005537-199902000-00017. [DOI] [PubMed] [Google Scholar]
  155. Wang B., Li J., Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A. 2000;97:13714–13719. doi: 10.1073/pnas.240335297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Wilson C.B., Embree L.J., Schowalter D., Albert R., Aruffo A., Hollenbaugh D., Linsley P., Kay M.A. Transient inhibition of CD28 and CD40 ligand interactions prolongs adenovirus-mediated transgene expression in the lung and facilitates expression after secondary vector administration. J Virol. 1998;72:7542–7550. doi: 10.1128/jvi.72.9.7542-7550.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Wivel N.A., Gao P.-G., Wilson J.M. The Development of Human Gene Therapy. San Diego, CA: Cold Spring Harbor Laboratory Press; 1999. Adenosvirus vectors. [Google Scholar]
  158. Wolff J.A., Lederberg J. An early history of gene transfer and therapy. Hum Gene Ther. 1994;5:469–480. doi: 10.1089/hum.1994.5.4-469. [DOI] [PubMed] [Google Scholar]
  159. Worgall S., Leopold P.L., Wolff G., Ferris B., Van Roijen N., Crystal R.G. Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum Gene Ther. 1997;8:1675–1684. doi: 10.1089/hum.1997.8.14-1675. [DOI] [PubMed] [Google Scholar]
  160. Yam P.Y., Yee J.K., Ito J.I., Sniecinski I., Doroshow J.H., Forman S.J., Zaia J.A. Comparison of amphotropic and pseudotyped VSV-G retroviral transduction in human CD34 + peripheral blood progenitor cells from adult donors with HIV-1 infection or cancer. Exp Hematol. 1998;26:962–968. [PubMed] [Google Scholar]
  161. Yamashita K., Masunaga T., Yanagida N., Takehara M., Hashimoto T., Kobayashi T., Echizenya H., Hua N., Fujita M., Murakami M., et al. Long-term acceptance of rat cardiac allografts on the basis of adenovirus mediated CD40Ig plus CTLA4Ig gene therapies. Transplantation. 2003;76:1089–1096. doi: 10.1097/01.TP.0000085651.20586.30. [DOI] [PubMed] [Google Scholar]
  162. Yan Z., Zhang Y., Duan D., Engelhardt J.F. Transsplicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A. 2000;97:6716–6721. doi: 10.1073/pnas.97.12.6716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Yang T., Duan R., Cao H., Lee B.H., Xia C., Chang Z., Keith Tanswell A., Hu J. Development of an inflammationinducible gene expression system using helper-dependent adenoviral vectors. J Gene Med. 2010;12:832–839. doi: 10.1002/jgm.1501. [DOI] [PubMed] [Google Scholar]
  164. Yang Y., Jooss K.U., Su Q., Ertl H.C., Wilson J.M. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 1996;3:137–144. [PubMed] [Google Scholar]
  165. Yang Y., Li Q., Ertl H.C., Wilson J.M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol. 1995;69:2004–2015. doi: 10.1128/jvi.69.4.2004-2015.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Yu S.F., von Rüden T., Kantoff P.W., Garber C., Seiberg M., Rüther U., Anderson W.F., Wagner E.F., Gilboa E. Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci U S A. 1986;83:3194–3198. doi: 10.1073/pnas.83.10.3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Zabner J., Cheng S.H., Meeker D., Launspach J., Balfour R., Perricone M.A., Morris J.E., Marshall J., Fasbender A., Smith A. E., et al. Comparison of DNA-lipid complexes and DNA alone for gene transfer to cystic fibrosis airway epithelia in vivo. J Clin Invest. 1997;100:1529–1537. doi: 10.1172/JCI119676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Zabner J., Couture L.A., Gregory R.J., Graham S.M., Smith A.E., Welsh M.J. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell. 1993;75:207–216. doi: 10.1016/0092-8674(93)80063-k. [DOI] [PubMed] [Google Scholar]
  169. Zabner J., Fasbender A.J., Moninger T., Poellinger K.A., Welsh M.J. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995;270:18997–19007. doi: 10.1074/jbc.270.32.18997. [DOI] [PubMed] [Google Scholar]
  170. Zsengellér Z., Otake K., Hossain S.A., Berclaz P.Y., Trapnell B.C. Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J Virol. 2000;74:9655–9667. doi: 10.1128/jvi.74.20.9655-9667.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES