Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 1;90(17):8058–8062. doi: 10.1073/pnas.90.17.8058

Isoproterenol stimulates rapid extrusion of sodium from isolated smooth muscle cells.

E D Moore 1, F S Fay 1
PMCID: PMC47287  PMID: 8367463

Abstract

beta-Agonists cause an inhibition of contractility and a transient stimulation of Na+/K+ pumping in smooth muscle cells of the stomach from the toad Bufo marinus. To determine if the stimulation of Na+/K+ pumping causes changes in intracellular [Na+] ([Na+]i) that might link Na+ pump stimulation to decrease Ca2+ availability for contraction, [Na+]i was measured in these cells with SBFI, a Na(+)-sensitive fluorescent indicator. Basal [Na+]i was 12.8 +/- 4.2 mM (n = 32) and was uniform throughout the cell. In response to isoproterenol, [Na+]i decreased an average of 7.1 +/- 1.1 mM in 3 sec. Since this decrease in [Na+]i could be completely blocked by inhibition of the Na+ pump, or by blockade of the beta-receptor, [Na+]i reduction is the result of occupation of the beta-receptor by isoproterenol and subsequent stimulation of the Na+ pump. 8-Bromoadenosine 3',5'-cyclic monophosphate and forskolin mimicked the effect of isoproterenol, indicating that the sequence of events linking beta-receptor occupation to Na+ pump stimulation most likely includes activation of adenylate cyclase, production of cAMP, and stimulation of cAMP-dependent protein kinase. The decrease in [Na+]i is sufficiently large and fast that it is expected to stimulate turnover of the Na+/Ca2+ exchanger in the Ca2+ extrusion mode, thereby accounting for the observed linkage between stimulation of the Na+/K+ pump and inhibition of contractility in response to beta-adrenergic agonists.

Full text

PDF
8058

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aickin C. C. Investigation of factors affecting the intracellular sodium activity in the smooth muscle of guinea-pig ureter. J Physiol. 1987 Apr;385:483–505. doi: 10.1113/jphysiol.1987.sp016503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aperia A., Bertorello A., Seri I. Dopamine causes inhibition of Na+-K+-ATPase activity in rat proximal convoluted tubule segments. Am J Physiol. 1987 Jan;252(1 Pt 2):F39–F45. doi: 10.1152/ajprenal.1987.252.1.F39. [DOI] [PubMed] [Google Scholar]
  3. Bertorello A. M., Aperia A., Walaas S. I., Nairn A. C., Greengard P. Phosphorylation of the catalytic subunit of Na+,K(+)-ATPase inhibits the activity of the enzyme. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11359–11362. doi: 10.1073/pnas.88.24.11359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bertorello A. M., Hopfield J. F., Aperia A., Greengard P. Inhibition by dopamine of (Na(+)+K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature. 1990 Sep 27;347(6291):386–388. doi: 10.1038/347386a0. [DOI] [PubMed] [Google Scholar]
  5. Blum H., Nioka S., Johnson R. G., Jr Activation of the Na+, K(+)-ATPase in Narcine brasiliensis. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1247–1251. doi: 10.1073/pnas.87.3.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borin M., Siffert W. Further characterization of the mechanisms mediating the rise in cytosolic free Na+ in thrombin-stimulated platelets. Evidence for inhibition of the Na+,K(+)-ATPase and for Na+ entry via a Ca2+ influx pathway. J Biol Chem. 1991 Jul 15;266(20):13153–13160. [PubMed] [Google Scholar]
  7. Brading A. F., Widdicombe J. H. An estimate of sodium-potassium pump activity and the number of pump sites in the smooth muscle of the guinea-pig taenia coli, using (3H)ouabain. J Physiol. 1974 Apr;238(2):235–249. doi: 10.1113/jphysiol.1974.sp010521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fay F. S., Hoffmann R., Leclair S., Merriam P. Preparation of individual smooth muscle cells from the stomach of Bufo marinus. Methods Enzymol. 1982;85(Pt B):284–292. doi: 10.1016/0076-6879(82)85027-1. [DOI] [PubMed] [Google Scholar]
  9. Geering K., Rossier B. C. Purification and characterization of (Na+ + K+)-ATPase from toad kidney. Biochim Biophys Acta. 1979 Jan 12;566(1):157–170. doi: 10.1016/0005-2744(79)90258-4. [DOI] [PubMed] [Google Scholar]
  10. Harootunian A. T., Kao J. P., Eckert B. K., Tsien R. Y. Fluorescence ratio imaging of cytosolic free Na+ in individual fibroblasts and lymphocytes. J Biol Chem. 1989 Nov 15;264(32):19458–19467. [PubMed] [Google Scholar]
  11. Ibarra F., Aperia A., Svensson L. B., Eklöf A. C., Greengard P. Bidirectional regulation of Na+,K(+)-ATPase activity by dopamine and an alpha-adrenergic agonist. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):21–24. doi: 10.1073/pnas.90.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jelicks L. A., Gupta R. K. NMR measurement of cytosolic free calcium, free magnesium, and intracellular sodium in the aorta of the normal and spontaneously hypertensive rat. J Biol Chem. 1990 Jan 25;265(3):1394–1400. [PubMed] [Google Scholar]
  13. Kargacin G. J., Fay F. S. Physiological and structural properties of saponin-skinned single smooth muscle cells. J Gen Physiol. 1987 Jul;90(1):49–73. doi: 10.1085/jgp.90.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kirk K. L., Dawson D. C. Passive cation permeability of turtle colon: evidence for a negative interaction between intracellular sodium and apical sodium permeability. Pflugers Arch. 1985 Jan;403(1):82–89. doi: 10.1007/BF00583286. [DOI] [PubMed] [Google Scholar]
  15. Kolbeck R. C., Hendry L. B., Bransome E. D., Speir W. A. Crown ethers which influence cardiac and respiratory muscle contractility. Experientia. 1984 Jul 15;40(7):727–731. doi: 10.1007/BF01949746. [DOI] [PubMed] [Google Scholar]
  16. Lee C. O., Vassalle M. Modulation of intracellular Na+ activity and cardiac force by norepinephrine and Ca2+. Am J Physiol. 1983 Jan;244(1):C110–C114. doi: 10.1152/ajpcell.1983.244.1.C110. [DOI] [PubMed] [Google Scholar]
  17. Minta A., Tsien R. Y. Fluorescent indicators for cytosolic sodium. J Biol Chem. 1989 Nov 15;264(32):19449–19457. [PubMed] [Google Scholar]
  18. Moore E. D., Becker P. L., Fogarty K. E., Williams D. A., Fay F. S. Ca2+ imaging in single living cells: theoretical and practical issues. Cell Calcium. 1990 Feb-Mar;11(2-3):157–179. doi: 10.1016/0143-4160(90)90068-6. [DOI] [PubMed] [Google Scholar]
  19. Negulescu P. A., Harootunian A., Tsien R. Y., Machen T. E. Fluorescence measurements of cytosolic free Na concentration, influx and efflux in gastric cells. Cell Regul. 1990 Feb;1(3):259–268. doi: 10.1091/mbc.1.3.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Okada K., Ishikawa S., Saito T. Interaction between endothelin-induced Na+ and Ca2+ kinetics in cultured rat vascular smooth muscle cells. J Cardiovasc Pharmacol. 1991;17 (Suppl 7):S124–S126. doi: 10.1097/00005344-199100177-00033. [DOI] [PubMed] [Google Scholar]
  21. Scheid C. R., Fay F. S. Beta-adrenergic effects on transmembrane 45Ca fluxes in isolated smooth muscle cells. Am J Physiol. 1984 May;246(5 Pt 1):C431–C438. doi: 10.1152/ajpcell.1984.246.5.C431. [DOI] [PubMed] [Google Scholar]
  22. Scheid C. R., Fay F. S. Control of ion distribution in isolated smooth muscle cells. I. Potassium. J Gen Physiol. 1980 Feb;75(2):163–182. doi: 10.1085/jgp.75.2.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Scheid C. R., Honeyman T. W., Fay F. S. Mechanism of beta-adrenergic relaxation of smooth muscle. Nature. 1979 Jan 4;277(5691):32–36. doi: 10.1038/277032a0. [DOI] [PubMed] [Google Scholar]
  24. Shimada K., Ohishi K., Fukunaga H., Ro J. S., Nambara T. Structure-activity relationship of bufotoxins and related compounds for the inhibition of Na+, K+ -adenosine triphosphatase. J Pharmacobiodyn. 1985 Dec;8(12):1054–1059. doi: 10.1248/bpb1978.8.1054. [DOI] [PubMed] [Google Scholar]
  25. Sims S. M., Singer J. J., Walsh J. V., Jr Antagonistic adrenergic-muscarinic regulation of M current in smooth muscle cells. Science. 1988 Jan 8;239(4836):190–193. doi: 10.1126/science.2827305. [DOI] [PubMed] [Google Scholar]
  26. Singer J. J., Walsh J. V., Jr Passive properties of the membrane of single freshly isolated smooth muscle cells. Am J Physiol. 1980 Nov;239(5):C153–C161. doi: 10.1152/ajpcell.1980.239.5.C153. [DOI] [PubMed] [Google Scholar]
  27. Vasilets L. A., Schwarz W. Regulation of endogenous and expressed Na+/K+ pumps in Xenopus oocytes by membrane potential and stimulation of protein kinases. J Membr Biol. 1992 Jan;125(2):119–132. doi: 10.1007/BF00233352. [DOI] [PubMed] [Google Scholar]
  28. Vasilets L. A., Schwarz W. Regulation of endogenous and expressed Na+/K+ pumps in Xenopus oocytes by membrane potential and stimulation of protein kinases. J Membr Biol. 1992 Jan;125(2):119–132. doi: 10.1007/BF00233352. [DOI] [PubMed] [Google Scholar]
  29. Williams D. A., Fay F. S. Calcium transients and resting levels in isolated smooth muscle cells as monitored with quin 2. Am J Physiol. 1986 May;250(5 Pt 1):C779–C791. doi: 10.1152/ajpcell.1986.250.5.C779. [DOI] [PubMed] [Google Scholar]
  30. Williams D. A., Fogarty K. E., Tsien R. Y., Fay F. S. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature. 1985 Dec 12;318(6046):558–561. doi: 10.1038/318558a0. [DOI] [PubMed] [Google Scholar]
  31. Yagi S., Becker P. L., Fay F. S. Relationship between force and Ca2+ concentration in smooth muscle as revealed by measurements on single cells. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4109–4113. doi: 10.1073/pnas.85.11.4109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamaguchi H., Honeyman T. W., Fay F. S. Beta-adrenergic actions on membrane electrical properties of dissociated smooth muscle cells. Am J Physiol. 1988 Mar;254(3 Pt 1):C423–C431. doi: 10.1152/ajpcell.1988.254.3.C423. [DOI] [PubMed] [Google Scholar]
  33. Yeh L. A., Ling L., English L., Cantley L. Phosphorylation of the (Na,K)-ATPase by a plasma membrane-bound protein kinase in friend erythroleukemia cells. J Biol Chem. 1983 May 25;258(10):6567–6574. [PubMed] [Google Scholar]
  34. Zeidel M. L., Brady H. R., Kone B. C., Gullans S. R., Brenner B. M. Endothelin, a peptide inhibitor of Na(+)-K(+)-ATPase in intact renaltubular epithelial cells. Am J Physiol. 1989 Dec;257(6 Pt 1):C1101–C1107. doi: 10.1152/ajpcell.1989.257.6.C1101. [DOI] [PubMed] [Google Scholar]
  35. Ziegler A., Somlyo A. V., Somlyo A. P. Beta-adrenergic effects on cellular Na, Mg, Ca, K and Cl in vascular smooth muscle: electron probe analysis of rabbit pulmonary artery. Cell Calcium. 1992 Oct;13(9):593–602. doi: 10.1016/0143-4160(92)90039-u. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES