Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 1;90(17):8268–8272. doi: 10.1073/pnas.90.17.8268

Ectopic neural expression of a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis.

A Ruiz i Altaba 1, C Cox 1, T M Jessell 1, A Klar 1
PMCID: PMC47330  PMID: 8367492

Abstract

The floor plate, a cell group that develops at the midline of the neural plate in response to inductive signals from the notochord, has been implicated in the control of dorsoventral neural pattern. The frog Pintallavis gene, encoding a member of the HNF-3/fork head transcription factor family, is expressed in the notochord and in midline neural plate cells that give rise to the floor plate. To examine whether Pintallavis might be involved in regulating the differentiation of the floor plate, we ectopically expressed Pintallavis by injection of synthetic mRNA into two-cell frog embryos. Injection of Pintallavis mRNA resulted in the ectopic expression of F-spondin, a gene encoding a floor plate-specific adhesion molecule, at the dorsal midline of the neural tube. The expression of Pintallavis in midline cells may therefore contribute to the establishment of the floor plate fate.

Full text

PDF
8268

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basler K., Edlund T., Jessell T. M., Yamada T. Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGF beta family member. Cell. 1993 May 21;73(4):687–702. doi: 10.1016/0092-8674(93)90249-p. [DOI] [PubMed] [Google Scholar]
  2. Bernhardt R. R., Nguyen N., Kuwada J. Y. Growth cone guidance by floor plate cells in the spinal cord of zebrafish embryos. Neuron. 1992 May;8(5):869–882. doi: 10.1016/0896-6273(92)90201-n. [DOI] [PubMed] [Google Scholar]
  3. Bovolenta P., Dodd J. Perturbation of neuronal differentiation and axon guidance in the spinal cord of mouse embryos lacking a floor plate: analysis of Danforth's short-tail mutation. Development. 1991 Oct;113(2):625–639. doi: 10.1242/dev.113.2.625. [DOI] [PubMed] [Google Scholar]
  4. Clarke J. D., Holder N., Soffe S. R., Storm-Mathisen J. Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost. Development. 1991 Jun;112(2):499–516. doi: 10.1242/dev.112.2.499. [DOI] [PubMed] [Google Scholar]
  5. Cooke J., Smith J. C. The midblastula cell cycle transition and the character of mesoderm in u.v.-induced nonaxial Xenopus development. Development. 1987 Feb;99(2):197–210. doi: 10.1242/dev.99.2.197. [DOI] [PubMed] [Google Scholar]
  6. Dale L., Slack J. M. Fate map for the 32-cell stage of Xenopus laevis. Development. 1987 Apr;99(4):527–551. doi: 10.1242/dev.99.4.527. [DOI] [PubMed] [Google Scholar]
  7. Dirksen M. L., Jamrich M. A novel, activin-inducible, blastopore lip-specific gene of Xenopus laevis contains a fork head DNA-binding domain. Genes Dev. 1992 Apr;6(4):599–608. doi: 10.1101/gad.6.4.599. [DOI] [PubMed] [Google Scholar]
  8. Doniach T., Phillips C. R., Gerhart J. C. Planar induction of anteroposterior pattern in the developing central nervous system of Xenopus laevis. Science. 1992 Jul 24;257(5069):542–545. doi: 10.1126/science.1636091. [DOI] [PubMed] [Google Scholar]
  9. Fraser S., Keynes R., Lumsden A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature. 1990 Mar 29;344(6265):431–435. doi: 10.1038/344431a0. [DOI] [PubMed] [Google Scholar]
  10. Harland R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 1991;36:685–695. doi: 10.1016/s0091-679x(08)60307-6. [DOI] [PubMed] [Google Scholar]
  11. Harland R., Misher L. Stability of RNA in developing Xenopus embryos and identification of a destabilizing sequence in TFIIIA messenger RNA. Development. 1988 Apr;102(4):837–852. doi: 10.1242/dev.102.4.837. [DOI] [PubMed] [Google Scholar]
  12. Hatta K. Role of the floor plate in axonal patterning in the zebrafish CNS. Neuron. 1992 Oct;9(4):629–642. doi: 10.1016/0896-6273(92)90027-b. [DOI] [PubMed] [Google Scholar]
  13. Hopwood N. D., Pluck A., Gurdon J. B. A Xenopus mRNA related to Drosophila twist is expressed in response to induction in the mesoderm and the neural crest. Cell. 1989 Dec 1;59(5):893–903. doi: 10.1016/0092-8674(89)90612-0. [DOI] [PubMed] [Google Scholar]
  14. Jones F. S., Chalepakis G., Gruss P., Edelman G. M. Activation of the cytotactin promoter by the homeobox-containing gene Evx-1. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2091–2095. doi: 10.1073/pnas.89.6.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones F. S., Prediger E. A., Bittner D. A., De Robertis E. M., Edelman G. M. Cell adhesion molecules as targets for Hox genes: neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox-2.5 and -2.4. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2086–2090. doi: 10.1073/pnas.89.6.2086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kintner C. Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain. Cell. 1992 Apr 17;69(2):225–236. doi: 10.1016/0092-8674(92)90404-z. [DOI] [PubMed] [Google Scholar]
  17. Klar A., Baldassare M., Jessell T. M. F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell. 1992 Apr 3;69(1):95–110. doi: 10.1016/0092-8674(92)90121-r. [DOI] [PubMed] [Google Scholar]
  18. Knöchel S., Lef J., Clement J., Klocke B., Hille S., Köster M., Knöchel W. Activin A induced expression of a fork head related gene in posterior chordamesoderm (notochord) of Xenopus laevis embryos. Mech Dev. 1992 Aug;38(2):157–165. doi: 10.1016/0925-4773(92)90007-7. [DOI] [PubMed] [Google Scholar]
  19. Krieg P. A., Melton D. A. Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 1984 Sep 25;12(18):7057–7070. doi: 10.1093/nar/12.18.7057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Placzek M., Jessell T. M., Dodd J. Induction of floor plate differentiation by contact-dependent, homeogenetic signals. Development. 1993 Jan;117(1):205–218. doi: 10.1242/dev.117.1.205. [DOI] [PubMed] [Google Scholar]
  21. Placzek M., Tessier-Lavigne M., Yamada T., Jessell T., Dodd J. Mesodermal control of neural cell identity: floor plate induction by the notochord. Science. 1990 Nov 16;250(4983):985–988. doi: 10.1126/science.2237443. [DOI] [PubMed] [Google Scholar]
  22. Ruiz i Altaba A., Jessell T. M. Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis. Development. 1992 Sep;116(1):81–93. doi: 10.1242/dev.116.Supplement.81. [DOI] [PubMed] [Google Scholar]
  23. Ruiz i Altaba A. Neural expression of the Xenopus homeobox gene Xhox3: evidence for a patterning neural signal that spreads through the ectoderm. Development. 1990 Apr;108(4):595–604. doi: 10.1242/dev.108.4.595. [DOI] [PubMed] [Google Scholar]
  24. Ruiz i Altaba A. Planar and vertical signals in the induction and patterning of the Xenopus nervous system. Development. 1992 Sep;116(1):67–80. doi: 10.1242/dev.116.1.67. [DOI] [PubMed] [Google Scholar]
  25. Schoenwolf G. C., Bortier H., Vakaet L. Fate mapping the avian neural plate with quail/chick chimeras: origin of prospective median wedge cells. J Exp Zool. 1989 Mar;249(3):271–278. doi: 10.1002/jez.1402490305. [DOI] [PubMed] [Google Scholar]
  26. Smith J. C., Slack J. M. Dorsalization and neural induction: properties of the organizer in Xenopus laevis. J Embryol Exp Morphol. 1983 Dec;78:299–317. [PubMed] [Google Scholar]
  27. Sundin O. H., Eichele G. A homeo domain protein reveals the metameric nature of the developing chick hindbrain. Genes Dev. 1990 Aug;4(8):1267–1276. doi: 10.1101/gad.4.8.1267. [DOI] [PubMed] [Google Scholar]
  28. Tessier-Lavigne M., Placzek M., Lumsden A. G., Dodd J., Jessell T. M. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature. 1988 Dec 22;336(6201):775–778. doi: 10.1038/336775a0. [DOI] [PubMed] [Google Scholar]
  29. Yamada T., Placzek M., Tanaka H., Dodd J., Jessell T. M. Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell. 1991 Feb 8;64(3):635–647. doi: 10.1016/0092-8674(91)90247-v. [DOI] [PubMed] [Google Scholar]
  30. van Straaten H. W., Hekking J. W., Beursgens J. P., Terwindt-Rouwenhorst E., Drukker J. Effect of the notochord on proliferation and differentiation in the neural tube of the chick embryo. Development. 1989 Dec;107(4):793–803. doi: 10.1242/dev.107.4.793. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES