Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 15;90(18):8324–8326. doi: 10.1073/pnas.90.18.8324

The isolation of molecular genetic markers for the identification of sex.

R Griffiths 1, B Tiwari 1
PMCID: PMC47348  PMID: 8378302

Abstract

It is difficult to identify sex in many species of eukaryotic organism. This can considerably impede research into their biology. Fortunately, one sex often possesses a unique chromosome termed Y or W. When DNA markers are available for these chromosomes, then sex identification becomes straightforward. We describe a technique that facilitates the isolation of such markers. The procedure makes use of low-stringency PCR to screen randomly selected primers for their ability to amplify sex-specific loci.

Full text

PDF
8324

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Foster J. W., Brennan F. E., Hampikian G. K., Goodfellow P. N., Sinclair A. H., Lovell-Badge R., Selwood L., Renfree M. B., Cooper D. W., Graves J. A. Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature. 1992 Oct 8;359(6395):531–533. doi: 10.1038/359531a0. [DOI] [PubMed] [Google Scholar]
  2. Griffiths P. D. Studies to define viral cofactors for human immunodeficiency virus. Infect Agents Dis. 1992 Oct;1(5):237–244. [PubMed] [Google Scholar]
  3. Griffiths R., Holland P. W. A novel avian W chromosome DNA repeat sequence in the lesser black-backed gull (Larus fuscus). Chromosoma. 1990 Aug;99(4):243–250. doi: 10.1007/BF01731699. [DOI] [PubMed] [Google Scholar]
  4. Griffiths R., Tiwari B., Becher S. A. The identification of sex in the starling Sturnus vulgaris using a molecular DNA technique. Mol Ecol. 1992 Oct;1(3):191–194. doi: 10.1111/j.1365-294x.1992.tb00175.x. [DOI] [PubMed] [Google Scholar]
  5. Handyside A. H., Pattinson J. K., Penketh R. J., Delhanty J. D., Winston R. M., Tuddenham E. G. Biopsy of human preimplantation embryos and sexing by DNA amplification. Lancet. 1989 Feb 18;1(8634):347–349. doi: 10.1016/s0140-6736(89)91723-6. [DOI] [PubMed] [Google Scholar]
  6. Heery D. M., Gannon F., Powell R. A simple method for subcloning DNA fragments from gel slices. Trends Genet. 1990 Jun;6(6):173–173. doi: 10.1016/0168-9525(90)90158-3. [DOI] [PubMed] [Google Scholar]
  7. Sinclair A. H., Berta P., Palmer M. S., Hawkins J. R., Griffiths B. L., Smith M. J., Foster J. W., Frischauf A. M., Lovell-Badge R., Goodfellow P. N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990 Jul 19;346(6281):240–244. doi: 10.1038/346240a0. [DOI] [PubMed] [Google Scholar]
  8. Tone M., Sakaki Y., Hashiguchi T., Mizuno S. Genus specificity and extensive methylation of the W chromosome-specific repetitive DNA sequences from the domestic fowl, Gallus gallus domesticus. Chromosoma. 1984;89(3):228–237. doi: 10.1007/BF00295004. [DOI] [PubMed] [Google Scholar]
  9. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES