Abstract
BACKGROUND: When the demand placed on the respiratory system is increased, the abdominal muscles become vigorously active to achieve expiration and facilitate subsequent inspiration. Abdominal muscle function could limit ventilatory capacity and a method to detect abdominal muscle fatigue would be of value. The maximum relaxation rate (MRR) of skeletal muscle has been used as an early index of the onset of the fatiguing process and precedes failure of force generation. The aim of this study was to measure MRR of abdominal muscles and to investigate whether it slows after maximum isocapnic ventilation (MIV). METHODS: Five normal subjects were studied. Each performed short sharp expiratory efforts against a 3 mm orifice before and immediately after a two minute MIV. Gastric pressure (PGA) was recorded and MRR (% pressure fall/10 ms) for each PGA trace was determined. RESULTS: Before MIV the mean (SD) maximum PGA MRR for the five subjects was 7.1 (0.8)% peak pressure fall/10 ms. Following MIV mean PGA MRR was decreased by 30% (range 25-35%), returning to control values within 5-10 minutes. CONCLUSIONS: The MRR of the abdominal muscles, measured from PGA, is numerically similar to that described for the diaphragm and other skeletal muscles. After two minutes of maximal isocapnic ventilation abdominal muscle MRR slows, indicating that these muscles are sufficiently heavily loaded to initiate the fatiguing process.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bai T. R., Rabinovitch B. J., Pardy R. L. Near-maximal voluntary hyperpnea and ventilatory muscle function. J Appl Physiol Respir Environ Exerc Physiol. 1984 Dec;57(6):1742–1748. doi: 10.1152/jappl.1984.57.6.1742. [DOI] [PubMed] [Google Scholar]
- Baydur A., Behrakis P. K., Zin W. A., Jaeger M., Milic-Emili J. A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis. 1982 Nov;126(5):788–791. doi: 10.1164/arrd.1982.126.5.788. [DOI] [PubMed] [Google Scholar]
- Bazzy A. R., Korten J. B., Haddad G. G. Increase in electromyogram low-frequency power in nonfatigued contracting skeletal muscle. J Appl Physiol (1985) 1986 Sep;61(3):1012–1017. doi: 10.1152/jappl.1986.61.3.1012. [DOI] [PubMed] [Google Scholar]
- CAMPBELL E. J. M. An electromyographic study of the role of the abdominal muscles in breathing. J Physiol. 1952 Jun;117(2):222–233. doi: 10.1113/jphysiol.1952.sp004742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Troyer A. Cournand lecture: Mechanical action of the abdominal muscles. Bull Eur Physiopathol Respir. 1983 Nov-Dec;19(6):575–581. [PubMed] [Google Scholar]
- De Troyer A., Estenne M., Ninane V., Van Gansbeke D., Gorini M. Transversus abdominis muscle function in humans. J Appl Physiol (1985) 1990 Mar;68(3):1010–1016. doi: 10.1152/jappl.1990.68.3.1010. [DOI] [PubMed] [Google Scholar]
- De Troyer A., Ninane V., Gilmartin J. J., Lemerre C., Estenne M. Triangularis sterni muscle use in supine humans. J Appl Physiol (1985) 1987 Mar;62(3):919–925. doi: 10.1152/jappl.1987.62.3.919. [DOI] [PubMed] [Google Scholar]
- De Troyer A., Sampson M., Sigrist S., Kelly S. How the abdominal muscles act on the rib cage. J Appl Physiol Respir Environ Exerc Physiol. 1983 Feb;54(2):465–469. doi: 10.1152/jappl.1983.54.2.465. [DOI] [PubMed] [Google Scholar]
- Dodd D. S., Brancatisano T., Engel L. A. Chest wall mechanics during exercise in patients with severe chronic air-flow obstruction. Am Rev Respir Dis. 1984 Jan;129(1):33–38. doi: 10.1164/arrd.1984.129.1.33. [DOI] [PubMed] [Google Scholar]
- Edwards R. H., Hill D. K., Jones D. A. Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J Physiol. 1975 Oct;251(2):287–301. doi: 10.1113/jphysiol.1975.sp011093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards R. H., Hill D. K., Jones D. A. Metabolic changes associated with the slowing of relaxation in fatigued mouse muscle. J Physiol. 1975 Oct;251(2):287–301. doi: 10.1113/jphysiol.1975.sp011093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esau S. A., Bellemare F., Grassino A., Permutt S., Roussos C., Pardy R. L. Changes in relaxation rate with diaphragmatic fatigue in humans. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1353–1360. doi: 10.1152/jappl.1983.54.5.1353. [DOI] [PubMed] [Google Scholar]
- Esau S. A., Bye P. T., Pardy R. L. Changes in rate of relaxation of sniffs with diaphragmatic fatigue in humans. J Appl Physiol Respir Environ Exerc Physiol. 1983 Sep;55(3):731–735. doi: 10.1152/jappl.1983.55.3.731. [DOI] [PubMed] [Google Scholar]
- Freedman S. Sustained maximum voluntary ventilation. Respir Physiol. 1970 Jan;8(2):230–244. doi: 10.1016/0034-5687(70)90017-4. [DOI] [PubMed] [Google Scholar]
- Gandevia S. C., Gorman R. B., McKenzie D. K., Southon F. C. Dynamic changes in human diaphragm length: maximal inspiratory and expulsive efforts studied with sequential radiography. J Physiol. 1992 Nov;457:167–176. doi: 10.1113/jphysiol.1992.sp019370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstone J. C., Green M., Moxham J. Maximum relaxation rate of the diaphragm during weaning from mechanical ventilation. Thorax. 1994 Jan;49(1):54–60. doi: 10.1136/thx.49.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grassino A., Goldman M. D., Mead J., Sears T. A. Mechanics of the human diaphragm during voluntary contraction: statics. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jun;44(6):829–839. doi: 10.1152/jappl.1978.44.6.829. [DOI] [PubMed] [Google Scholar]
- JEWELL B. R., WILKIE D. R. The mechanical properties of relaxing muscle. J Physiol. 1960 Jun;152:30–47. doi: 10.1113/jphysiol.1960.sp006467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koulouris N., Vianna L. G., Mulvey D. A., Green M., Moxham J. Maximal relaxation rates of esophageal, nose, and mouth pressures during a sniff reflect inspiratory muscle fatigue. Am Rev Respir Dis. 1989 May;139(5):1213–1217. doi: 10.1164/ajrccm/139.5.1213. [DOI] [PubMed] [Google Scholar]
- Kyroussis D., Mills G., Hamnegard C. H., Wragg S., Road J., Green M., Moxham J. Inspiratory muscle relaxation rate assessed from sniff nasal pressure. Thorax. 1994 Nov;49(11):1127–1133. doi: 10.1136/thx.49.11.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy R. D., Esau S. A., Bye P. T., Pardy R. L. Relaxation rate of mouth pressure with sniffs at rest and with inspiratory muscle fatigue. Am Rev Respir Dis. 1984 Jul;130(1):38–41. doi: 10.1164/arrd.1984.130.1.38. [DOI] [PubMed] [Google Scholar]
- MILIC-EMILI J., MEAD J., TURNER J. M., GLAUSER E. M. IMPROVED TECHNIQUE FOR ESTIMATING PLEURAL PRESSURE FROM ESOPHAGEAL BALLOONS. J Appl Physiol. 1964 Mar;19:207–211. doi: 10.1152/jappl.1964.19.2.207. [DOI] [PubMed] [Google Scholar]
- Mador M. J., Kufel T. J. Effect of inspiratory muscle fatigue on inspiratory muscle relaxation rates in healthy subjects. Chest. 1992 Dec;102(6):1767–1773. doi: 10.1378/chest.102.6.1767. [DOI] [PubMed] [Google Scholar]
- Martin J. G., De Troyer A. The behaviour of the abdominal muscles during inspiratory mechanical loading. Respir Physiol. 1982 Oct;50(1):63–73. doi: 10.1016/0034-5687(82)90007-x. [DOI] [PubMed] [Google Scholar]
- Melissinos C. G., Bruce E. N., Goldman M. D., Elliott E., Mead J. Pattern of diaphragmatic activity during forced expiratory vital capacity. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1515–1525. doi: 10.1152/jappl.1981.51.6.1515. [DOI] [PubMed] [Google Scholar]
- Mier A., Brophy C., Estenne M., Moxham J., Green M., De Troyer A. Action of abdominal muscles on rib cage in humans. J Appl Physiol (1985) 1985 May;58(5):1438–1443. doi: 10.1152/jappl.1985.58.5.1438. [DOI] [PubMed] [Google Scholar]
- Moxham J., Edwards R. H., Aubier M., De Troyer A., Farkas G., Macklem P. T., Roussos C. Changes in EMG power spectrum (high-to-low ratio) with force fatigue in humans. J Appl Physiol Respir Environ Exerc Physiol. 1982 Nov;53(5):1094–1099. doi: 10.1152/jappl.1982.53.5.1094. [DOI] [PubMed] [Google Scholar]
- Mulvey D. A., Elliott M. W., Koulouris N. G., Carroll M. P., Moxham J., Green M. Sniff esophageal and nasopharyngeal pressures and maximal relaxation rates in patients with respiratory dysfunction. Am Rev Respir Dis. 1991 May;143(5 Pt 1):950–953. doi: 10.1164/ajrccm/143.5_Pt_1.950. [DOI] [PubMed] [Google Scholar]
- Mulvey D. A., Koulouris N. G., Elliott M. W., Laroche C. M., Moxham J., Green M. Inspiratory muscle relaxation rate after voluntary maximal isocapnic ventilation in humans. J Appl Physiol (1985) 1991 May;70(5):2173–2180. doi: 10.1152/jappl.1991.70.5.2173. [DOI] [PubMed] [Google Scholar]
- Mulvey D. A., Koulouris N. G., Elliott M. W., Moxham J., Green M. Maximal relaxation rate of inspiratory muscle can be effort-dependent and reflect the activation of fast-twitch fibers. Am Rev Respir Dis. 1991 Oct;144(4):803–806. doi: 10.1164/ajrccm/144.4.803. [DOI] [PubMed] [Google Scholar]
- OGILVIE C. M., STONE R. W., MARSHALL R. The mechanics of breathing during the maximum breathing capacity test. Clin Sci. 1955 Feb;14(1):101–107. [PubMed] [Google Scholar]
- Potter W. A., Olafsson S., Hyatt R. E. Ventilatory mechanics and expiratory flow limitation during exercise in patients with obstructive lung disease. J Clin Invest. 1971 Apr;50(4):910–919. doi: 10.1172/JCI106563. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki S., Suzuki J., Ishii T., Akahori T., Okubo T. Relationship of respiratory effort sensation to expiratory muscle fatigue during expiratory threshold loading. Am Rev Respir Dis. 1992 Feb;145(2 Pt 1):461–466. doi: 10.1164/ajrccm/145.2_Pt_1.461. [DOI] [PubMed] [Google Scholar]
- Wiles C. M., Young A., Jones D. A., Edwards R. H. Relaxation rate of constituent muscle-fibre types in human quadriceps. Clin Sci (Lond) 1979 Jan;56(1):47–52. doi: 10.1042/cs0560047. [DOI] [PubMed] [Google Scholar]
