Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 15;90(18):8444–8448. doi: 10.1073/pnas.90.18.8444

Physical interaction between the herpes simplex virus 1 origin-binding protein and single-stranded DNA-binding protein ICP8.

P E Boehmer 1, I R Lehman 1
PMCID: PMC47373  PMID: 8397405

Abstract

We had previously demonstrated that the herpes simplex virus 1 (HSV-1) single-stranded DNA-binding protein (ICP8) can specifically stimulate the helicase activity of the HSV-1 origin-binding protein (UL9). We show here that this functional stimulation is a manifestation of a tight interaction between UL9 protein and ICP8. By using protein-affinity chromatography, we have demonstrated the specific binding of purified UL9 protein to immobilized ICP8 and vice versa. Furthermore, ICP8 is specifically retained by a column on which the C-terminal 37-kDa DNA-binding domain of the UL9 protein was immobilized. The interaction between ICP8 and the DNA-binding domain of the UL9 protein was confirmed by cochromatography of the two proteins. These results suggest that the UL9 protein and ICP8 form a tight complex that functions in origin recognition and unwinding.

Full text

PDF
8444

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boehmer P. E., Dodson M. S., Lehman I. R. The herpes simplex virus type-1 origin binding protein. DNA helicase activity. J Biol Chem. 1993 Jan 15;268(2):1220–1225. [PubMed] [Google Scholar]
  2. Challberg M. D., Kelly T. J. Animal virus DNA replication. Annu Rev Biochem. 1989;58:671–717. doi: 10.1146/annurev.bi.58.070189.003323. [DOI] [PubMed] [Google Scholar]
  3. Deb S., Deb S. P. A 269-amino-acid segment with a pseudo-leucine zipper and a helix-turn-helix motif codes for the sequence-specific DNA-binding domain of herpes simplex virus type 1 origin-binding protein. J Virol. 1991 Jun;65(6):2829–2838. doi: 10.1128/jvi.65.6.2829-2838.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dodson M. S., Lehman I. R. The herpes simplex virus type I origin binding protein. DNA-dependent nucleoside triphosphatase activity. J Biol Chem. 1993 Jan 15;268(2):1213–1219. [PubMed] [Google Scholar]
  5. Dornreiter I., Erdile L. F., Gilbert I. U., von Winkler D., Kelly T. J., Fanning E. Interaction of DNA polymerase alpha-primase with cellular replication protein A and SV40 T antigen. EMBO J. 1992 Feb;11(2):769–776. doi: 10.1002/j.1460-2075.1992.tb05110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elias P., Gustafsson C. M., Hammarsten O., Stow N. D. Structural elements required for the cooperative binding of the herpes simplex virus origin binding protein to oriS reside in the N-terminal part of the protein. J Biol Chem. 1992 Aug 25;267(24):17424–17429. [PubMed] [Google Scholar]
  7. Elias P., Gustafsson C. M., Hammarsten O. The origin binding protein of herpes simplex virus 1 binds cooperatively to the viral origin of replication oris. J Biol Chem. 1990 Oct 5;265(28):17167–17173. [PubMed] [Google Scholar]
  8. Erdile L. F., Collins K. L., Russo A., Simancek P., Small D., Umbricht C., Virshup D., Cheng L., Randall S., Weinberg D. Initiation of SV40 DNA replication: mechanism and control. Cold Spring Harb Symp Quant Biol. 1991;56:303–313. doi: 10.1101/sqb.1991.056.01.037. [DOI] [PubMed] [Google Scholar]
  9. Fierer D. S., Challberg M. D. Purification and characterization of UL9, the herpes simplex virus type 1 origin-binding protein. J Virol. 1992 Jul;66(7):3986–3995. doi: 10.1128/jvi.66.7.3986-3995.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hernandez T. R., Lehman I. R. Functional interaction between the herpes simplex-1 DNA polymerase and UL42 protein. J Biol Chem. 1990 Jul 5;265(19):11227–11232. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. McGeoch D. J. The genomes of the human herpesviruses: contents, relationships, and evolution. Annu Rev Microbiol. 1989;43:235–265. doi: 10.1146/annurev.mi.43.100189.001315. [DOI] [PubMed] [Google Scholar]
  13. Rabkin S. D., Hanlon B. Herpes simplex virus DNA synthesis at a preformed replication fork in vitro. J Virol. 1990 Oct;64(10):4957–4967. doi: 10.1128/jvi.64.10.4957-4967.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smale S. T., Tjian R. T-antigen-DNA polymerase alpha complex implicated in simian virus 40 DNA replication. Mol Cell Biol. 1986 Nov;6(11):4077–4087. doi: 10.1128/mcb.6.11.4077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stow N. D. Herpes simplex virus type 1 origin-dependent DNA replication in insect cells using recombinant baculoviruses. J Gen Virol. 1992 Feb;73(Pt 2):313–321. doi: 10.1099/0022-1317-73-2-313. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES