Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 15;90(18):8534–8537. doi: 10.1073/pnas.90.18.8534

Expression of 300-kilodalton intermediate filament-associated protein distinguishes human glioma cells from normal astrocytes.

H Y Yang 1, N Lieska 1, R Glick 1, D Shao 1, G D Pappas 1
PMCID: PMC47391  PMID: 8378327

Abstract

The availability of biochemical markers to distinguish glioma cells from normal astrocytes would have enormous diagnostic value. Such markers also may be of value in studying the basic biology of human astrocytomas. The vimentin-binding, 300-kDa intermediate filament (IF)-associated protein (IFAP-300kDa) has recently been shown to be developmentally expressed in radial glia of the central nervous system of the rat. It is not detected in the normal or reactive astrocytes of the adult rat nor in neonatal rat brain astrocytes in primary culture. In the present study, double-label immunofluorescence microscopy using antibodies to IFAP-300kDa and glial fibrillary acidic protein (GFAP, an astrocyte-specific IF structural protein) identifies this IFAP in GFAP-containing tumor cells from examples of all three major types of human astrocytomas (i.e., well-differentiated, anaplastic, and glioblastoma multiforme). Astrocytoma cells in primary cultures prepared from all three astrocytomas also express this protein. It is not detectable in normal adult brain tissue. Immunoblot analyses using the IFAP-300kDa antibody confirm the presence of a 300-kDa polypeptide in fresh astrocytoma preparations enriched for IF proteins. These results suggest the utility of IFAP-300kDa as a marker for identification of human glioma cells both in vitro and in situ.

Full text

PDF
8534

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abd-el-Basset E. M., Kalnins V. I., Fedoroff S. Expression of 48-kilodalton intermediate filament-associated protein in differentiating and in mature astrocytes in various regions of the central nervous system. J Neurosci Res. 1988 Oct-Dec;21(2-4):226–237. doi: 10.1002/jnr.490210215. [DOI] [PubMed] [Google Scholar]
  2. Abd-el-Basset E. M., Kalnins V. I., Subrahmanyan L., Ahmed I., Fedoroff S. 48-Kilodalton intermediate-filament-associated protein in astrocytes. J Neurosci Res. 1988;19(1):1–13. doi: 10.1002/jnr.490190102. [DOI] [PubMed] [Google Scholar]
  3. Albers K., Fuchs E. The molecular biology of intermediate filament proteins. Int Rev Cytol. 1992;134:243–279. doi: 10.1016/s0074-7696(08)62030-6. [DOI] [PubMed] [Google Scholar]
  4. Antanitus D. S., Choi B. H., Lapham L. W. The demonstration of glial fibrillary acidic protein in the cerebrum of the human fetus by indirect immunofluorescence. Brain Res. 1976 Feb 27;103(3):613–616. doi: 10.1016/0006-8993(76)90464-9. [DOI] [PubMed] [Google Scholar]
  5. Bignami A., Eng L. F., Dahl D., Uyeda C. T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 1972 Aug 25;43(2):429–435. doi: 10.1016/0006-8993(72)90398-8. [DOI] [PubMed] [Google Scholar]
  6. Bongcam-Rudloff E., Nistér M., Betsholtz C., Wang J. L., Stenman G., Huebner K., Croce C. M., Westermark B. Human glial fibrillary acidic protein: complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes. Cancer Res. 1991 Mar 1;51(5):1553–1560. [PubMed] [Google Scholar]
  7. Chabot P., Vincent M. Transient expression of an intermediate filament-associated protein (IFAPa-400) during in vivo and in vitro differentiation of chick embryonic cells derived from neuroectoderm. Brain Res Dev Brain Res. 1990 Jul 1;54(2):195–204. doi: 10.1016/0165-3806(90)90142-l. [DOI] [PubMed] [Google Scholar]
  8. Dahl D., Bignami A., Weber K., Osborn M. Filament proteins in rat optic nerves undergoing Wallerian degeneration: localization of vimentin, the fibroblastic 100-A filament protein, in normal and reactive astrocytes. Exp Neurol. 1981 Aug;73(2):496–506. doi: 10.1016/0014-4886(81)90283-1. [DOI] [PubMed] [Google Scholar]
  9. Dahl D., Rueger D. C., Bignami A., Weber K., Osborn M. Vimentin, the 57 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol. 1981 Jun;24(2):191–196. [PubMed] [Google Scholar]
  10. Dahl D. The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination. J Neurosci Res. 1981;6(6):741–748. doi: 10.1002/jnr.490060608. [DOI] [PubMed] [Google Scholar]
  11. Daumas-Duport C., Scheithauer B., O'Fallon J., Kelly P. Grading of astrocytomas. A simple and reproducible method. Cancer. 1988 Nov 15;62(10):2152–2165. doi: 10.1002/1097-0142(19881115)62:10<2152::aid-cncr2820621015>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  12. Deck J. H., Eng L. F., Bigbee J., Woodcock S. M. The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol. 1978 Jun 30;42(3):183–190. doi: 10.1007/BF00690355. [DOI] [PubMed] [Google Scholar]
  13. Duffy P. E., Graf L., Rapport M. M. Identification of glial fibrillary acidic protein by the immunoperoxidase method in human brain tumors. J Neuropathol Exp Neurol. 1977 Jul;36(4):645–652. doi: 10.1097/00005072-197707000-00001. [DOI] [PubMed] [Google Scholar]
  14. Duffy P. E., Huang Y. Y., Rapport M. M. The relationship of glial fibrillary acidic protein to the shape, motility, and differentiation of human astrocytoma cells. Exp Cell Res. 1982 May;139(1):145–157. doi: 10.1016/0014-4827(82)90328-7. [DOI] [PubMed] [Google Scholar]
  15. Eng L. F., Rubinstein L. J. Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem. 1978 Jul;26(7):513–522. doi: 10.1177/26.7.357640. [DOI] [PubMed] [Google Scholar]
  16. Eng L. F., Vanderhaeghen J. J., Bignami A., Gerstl B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971 May 7;28(2):351–354. doi: 10.1016/0006-8993(71)90668-8. [DOI] [PubMed] [Google Scholar]
  17. Fliegner K. H., Liem R. K. Cellular and molecular biology of neuronal intermediate filaments. Int Rev Cytol. 1991;131:109–167. doi: 10.1016/s0074-7696(08)62018-5. [DOI] [PubMed] [Google Scholar]
  18. Foisner R., Wiche G. Intermediate filament-associated proteins. Curr Opin Cell Biol. 1991 Feb;3(1):75–81. doi: 10.1016/0955-0674(91)90168-x. [DOI] [PubMed] [Google Scholar]
  19. Goldman J. E., Schaumburg H. H., Norton W. T. Isolation and characterization of glial filaments from human brain. J Cell Biol. 1978 Aug;78(2):426–440. doi: 10.1083/jcb.78.2.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Herpers M. J., Ramaekers F. C., Aldeweireldt J., Moesker O., Slooff J. Co-expression of glial fibrillary acidic protein- and vimentin-type intermediate filaments in human astrocytomas. Acta Neuropathol. 1986;70(3-4):333–339. doi: 10.1007/BF00686093. [DOI] [PubMed] [Google Scholar]
  21. Houle J., Fedoroff S. Temporal relationship between the appearance of vimentin and neural tube development. Brain Res. 1983 Aug;285(2):189–195. doi: 10.1016/0165-3806(83)90051-2. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Landry C. F., Ivy G. O., Brown I. R. Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed by in situ hybridization. J Neurosci Res. 1990 Feb;25(2):194–203. doi: 10.1002/jnr.490250207. [DOI] [PubMed] [Google Scholar]
  24. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  25. Levitt P., Rakic P. Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol. 1980 Oct 1;193(3):815–840. doi: 10.1002/cne.901930316. [DOI] [PubMed] [Google Scholar]
  26. Lieska N., Yang H. Y., Goldman R. D. Purification of the 300K intermediate filament-associated protein and its in vitro recombination with intermediate filaments. J Cell Biol. 1985 Sep;101(3):802–813. doi: 10.1083/jcb.101.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lukás Z., Dráber P., Bucek J., Dráberová E., Viklický V., Stasková Z. Expression of vimentin and glial fibrillary acidic protein in human developing spinal cord. Histochem J. 1989 Dec;21(12):693–701. doi: 10.1007/BF01002834. [DOI] [PubMed] [Google Scholar]
  28. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McDermott K. W., Lantos P. L. The distribution of glial fibrillary acidic protein and vimentin in postnatal marmoset (Callithrix jacchus) brain. Brain Res Dev Brain Res. 1989 Feb 1;45(2):169–177. doi: 10.1016/0165-3806(89)90036-9. [DOI] [PubMed] [Google Scholar]
  30. Nelson J. S., Tsukada Y., Schoenfeld D., Fulling K., Lamarche J., Peress N. Necrosis as a prognostic criterion in malignant supratentorial, astrocytic gliomas. Cancer. 1983 Aug 1;52(3):550–554. doi: 10.1002/1097-0142(19830801)52:3<550::aid-cncr2820520327>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  31. Schiffer D., Giordana M. T., Migheli A., Giaccone G., Pezzotta S., Mauro A. Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain. Brain Res. 1986 May 21;374(1):110–118. doi: 10.1016/0006-8993(86)90399-9. [DOI] [PubMed] [Google Scholar]
  32. Schnitzer J., Franke W. W., Schachner M. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol. 1981 Aug;90(2):435–447. doi: 10.1083/jcb.90.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Steinert P. M., Roop D. R. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weinstein D. E., Shelanski M. L., Liem R. K. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J Cell Biol. 1991 Mar;112(6):1205–1213. doi: 10.1083/jcb.112.6.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Westphal M., Nausch H., Herrmann H. D. Antigenic staining patterns of human glioma cultures: primary cultures, long-term cultures and cell lines. J Neurocytol. 1990 Aug;19(4):466–477. doi: 10.1007/BF01257237. [DOI] [PubMed] [Google Scholar]
  37. Yang H. Y., Lieska N., Goldman A. E., Goldman R. D. A 300,000-mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells. J Cell Biol. 1985 Feb;100(2):620–631. doi: 10.1083/jcb.100.2.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yang H. Y., Lieska N., Goldman A. E., Goldman R. D. Colchicine-sensitive and colchicine-insensitive intermediate filament systems distinguished by a new intermediate filament-associated protein, IFAP-70/280 kD. Cell Motil Cytoskeleton. 1992;22(3):185–199. doi: 10.1002/cm.970220306. [DOI] [PubMed] [Google Scholar]
  39. Yang H. Y., Lieska N., Goldman R. D., Johnson-Seaton D., Pappas G. D. Distinct developmental subtypes of cultured non-stellate rat astrocytes distinguished by a new glial intermediate filament-associated protein. Brain Res. 1992 Feb 21;573(1):161–168. doi: 10.1016/0006-8993(92)90127-u. [DOI] [PubMed] [Google Scholar]
  40. Yung W. K., Luna M., Borit A. Vimentin and glial fibrillary acidic protein in human brain tumors. J Neurooncol. 1985;3(1):35–38. doi: 10.1007/BF00165169. [DOI] [PubMed] [Google Scholar]
  41. Zackroff R. V., Goldman R. D. In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6226–6230. doi: 10.1073/pnas.76.12.6226. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES