Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 15;90(18):8562–8565. doi: 10.1073/pnas.90.18.8562

Nucleation of hydroxyapatite by bone sialoprotein.

G K Hunter 1, H A Goldberg 1
PMCID: PMC47397  PMID: 8397409

Abstract

Bone sialoprotein (BSP) and osteopontin, the major phosphorylated proteins of mammalian bone, have been proposed to function in the initiation of mineralization. To test this hypothesis, the effects of BSP and osteopontin on hydroxyapatite crystal formation were determined by using a steady-state agarose gel system. At low calcium phosphate concentrations, no accumulation of calcium and phosphate occurred in control gels or gels containing osteopontin. Gels containing BSP at 1-5 micrograms/ml, however, exhibited a visible precipitation band and significantly elevated Ca + PO4 contents. By powder x-ray diffraction, the precipitate formed in the presence of BSP was shown to be hydroxyapatite. These findings suggest that bone sialoprotein may be involved in the nucleation of hydroxyapatite at the mineralization front of bone.

Full text

PDF
8562

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addadi L., Moradian J., Shay E., Maroudas N. G., Weiner S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. Proc Natl Acad Sci U S A. 1987 May;84(9):2732–2736. doi: 10.1073/pnas.84.9.2732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Addadi L., Weiner S. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4110–4114. doi: 10.1073/pnas.82.12.4110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bianco P., Fisher L. W., Young M. F., Termine J. D., Robey P. G. Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int. 1991 Dec;49(6):421–426. doi: 10.1007/BF02555854. [DOI] [PubMed] [Google Scholar]
  4. Boskey A. L., Maresca M., Doty S., Sabsay B., Veis A. Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner. 1990 Oct;11(1):55–65. doi: 10.1016/0169-6009(90)90015-8. [DOI] [PubMed] [Google Scholar]
  5. Chen J., Shapiro H. S., Sodek J. Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res. 1992 Aug;7(8):987–997. doi: 10.1002/jbmr.5650070816. [DOI] [PubMed] [Google Scholar]
  6. Chen J., Zhang Q., McCulloch C. A., Sodek J. Immunohistochemical localization of bone sialoprotein in foetal porcine bone tissues: comparisons with secreted phosphoprotein 1 (SPP-1, osteopontin) and SPARC (osteonectin). Histochem J. 1991 Jun;23(6):281–289. doi: 10.1007/BF01045047. [DOI] [PubMed] [Google Scholar]
  7. Chen Y., Bal B. S., Gorski J. P. Calcium and collagen binding properties of osteopontin, bone sialoprotein, and bone acidic glycoprotein-75 from bone. J Biol Chem. 1992 Dec 5;267(34):24871–24878. [PubMed] [Google Scholar]
  8. Fujisawa R., Kuboki Y. Affinity of bone sialoprotein and several other bone and dentin acidic proteins to collagen fibrils. Calcif Tissue Int. 1992 Dec;51(6):438–442. doi: 10.1007/BF00296677. [DOI] [PubMed] [Google Scholar]
  9. Fujisawa R., Kuboki Y., Sasaki S. Effects of dentin phosphophoryn on precipitation of calcium phosphate in gel in vitro. Calcif Tissue Int. 1987 Jul;41(1):44–47. doi: 10.1007/BF02555130. [DOI] [PubMed] [Google Scholar]
  10. Glimcher M. J. Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):479–508. doi: 10.1098/rstb.1984.0041. [DOI] [PubMed] [Google Scholar]
  11. Gorski J. P. Acidic phosphoproteins from bone matrix: a structural rationalization of their role in biomineralization. Calcif Tissue Int. 1992 May;50(5):391–396. doi: 10.1007/BF00296767. [DOI] [PubMed] [Google Scholar]
  12. Kasugai S., Nagata T., Sodek J. Temporal studies on the tissue compartmentalization of bone sialoprotein (BSP), osteopontin (OPN), and SPARC protein during bone formation in vitro. J Cell Physiol. 1992 Sep;152(3):467–477. doi: 10.1002/jcp.1041520305. [DOI] [PubMed] [Google Scholar]
  13. Linde A., Lussi A., Crenshaw M. A. Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int. 1989 Apr;44(4):286–295. doi: 10.1007/BF02553763. [DOI] [PubMed] [Google Scholar]
  14. Nagata T., Goldberg H. A., Zhang Q., Domenicucci C., Sodek J. Biosynthesis of bone proteins by fetal porcine calvariae in vitro. Rapid association of sulfated sialoproteins (secreted phosphoprotein-1 and bone sialoprotein) and chondroitin sulfate proteoglycan (CS-PGIII) with bone mineral. Matrix. 1991 Apr;11(2):86–100. doi: 10.1016/s0934-8832(11)80212-x. [DOI] [PubMed] [Google Scholar]
  15. Nawrot C. F., Campbell D. J., Schroeder J. K., Van Valkenburg M. Dental phosphoprotein-induced formation of hydroxylapatite during in vitro synthesis of amorphous calcium phosphate. Biochemistry. 1976 Aug 10;15(16):3445–3449. doi: 10.1021/bi00661a008. [DOI] [PubMed] [Google Scholar]
  16. Termine J. D., Eanes E. D., Conn K. M. Phosphoprotein modulation of apatite crystallization. Calcif Tissue Int. 1980;31(3):247–251. doi: 10.1007/BF02407188. [DOI] [PubMed] [Google Scholar]
  17. White S. W., Hulmes D. J., Miller A., Timmins P. A. Collagen-mineral axial relationship in calcified turkey leg tendon by X-ray and neutron diffraction. Nature. 1977 Mar 31;266(5601):421–425. doi: 10.1038/266421a0. [DOI] [PubMed] [Google Scholar]
  18. Zhang Q., Domenicucci C., Goldberg H. A., Wrana J. L., Sodek J. Characterization of fetal porcine bone sialoproteins, secreted phosphoprotein I (SPPI, osteopontin), bone sialoprotein, and a 23-kDa glycoprotein. Demonstration that the 23-kDa glycoprotein is derived from the carboxyl terminus of SPPI. J Biol Chem. 1990 May 5;265(13):7583–7589. [PubMed] [Google Scholar]
  19. de Jong A. S., Hak T. J., van Duijn P. The dynamics of calcium phosphate precipitation studied with a new polyacrylamide steady state matrix-model: influence of pyrophosphate collagen and chondroitin sulfate. Connect Tissue Res. 1980;7(2):73–79. doi: 10.3109/03008208009152291. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES