Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 15;90(18):8604–8608. doi: 10.1073/pnas.90.18.8604

Asparagine 229 in thymidylate synthase contributes to, but is not essential for, catalysis.

L Liu 1, D V Santi 1
PMCID: PMC47406  PMID: 8378336

Abstract

The conserved Asn-229 (N229) of thymidylate synthase (TS, EC 2.1.1.45) provides the only side chain that directly hydrogen bonds with the pyrimidine ring of the substrate dUMP. The carboxamide moiety forms a cyclic hydrogen bond network with the NH-3 and O-4 of the base and is a prime candidate for assisting proton-transfer reactions that occur at O-4 of the pyrimidine ring of dUMP. A complete replacement set of mutants at position 229 of Lactobacillus casei TS (N229 mutants) has been prepared, purified, and characterized. Fifteen of the 19 TS mutants were catalytically active. Steady-state kinetic parameters of N229 mutants varied 17- and 115-fold in the Km values for 5,10-methylene-5,6,7,8-tetrahydrofolate and dUMP, respectively, 1000-fold in kcat values, and 10,000-fold in kcat/Km values. Wild-type TS possesses lower Km and higher kcat and kcat/Km values than any of the TS N229 mutants. We conclude that N229 contributes to, but is not essential for, binding and catalysis. When the wild-type enzyme was not considered, there were excellent correlations between log kcat and the hydrophobicity of the side chains at position 229, in which the more hydrophobic side chains showed higher values. Our results suggest a unique interaction between N229 and the substrates that seems important in appropriately positioning the uracil heterocycle for catalysis. We propose that in the absence of N229, the electrophilic catalyst that transfers protons to the O-4 and stabilizes enol intermediates is a highly conserved molecule of water.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chamberlain J. P. Fluorographic detection of radioactivity in polyacrylamide gels with the water-soluble fluor, sodium salicylate. Anal Biochem. 1979 Sep 15;98(1):132–135. doi: 10.1016/0003-2697(79)90716-4. [DOI] [PubMed] [Google Scholar]
  2. Chiang Y., Kresge A. J. Enols and other reactive species. Science. 1991 Jul 26;253(5018):395–400. doi: 10.1126/science.253.5018.395. [DOI] [PubMed] [Google Scholar]
  3. Chothia C. Principles that determine the structure of proteins. Annu Rev Biochem. 1984;53:537–572. doi: 10.1146/annurev.bi.53.070184.002541. [DOI] [PubMed] [Google Scholar]
  4. Christian R. B., Zuckermann R. N., Kerr J. M., Wang L., Malcolm B. A. Simplified methods for construction, assessment and rapid screening of peptide libraries in bacteriophage. J Mol Biol. 1992 Oct 5;227(3):711–718. doi: 10.1016/0022-2836(92)90219-a. [DOI] [PubMed] [Google Scholar]
  5. Climie S. C., Carreras C. W., Santi D. V. Complete replacement set of amino acids at the C-terminus of thymidylate synthase: quantitative structure-activity relationship of mutants of an enzyme. Biochemistry. 1992 Jul 7;31(26):6032–6038. doi: 10.1021/bi00141a011. [DOI] [PubMed] [Google Scholar]
  6. Climie S., Ruiz-Perez L., Gonzalez-Pacanowska D., Prapunwattana P., Cho S. W., Stroud R., Santi D. V. Saturation site-directed mutagenesis of thymidylate synthase. J Biol Chem. 1990 Nov 5;265(31):18776–18779. [PubMed] [Google Scholar]
  7. Climie S., Santi D. V. Chemical synthesis of the thymidylate synthase gene. Proc Natl Acad Sci U S A. 1990 Jan;87(2):633–637. doi: 10.1073/pnas.87.2.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cornette J. L., Cease K. B., Margalit H., Spouge J. L., Berzofsky J. A., DeLisi C. Hydrophobicity scales and computational techniques for detecting amphipathic structures in proteins. J Mol Biol. 1987 Jun 5;195(3):659–685. doi: 10.1016/0022-2836(87)90189-6. [DOI] [PubMed] [Google Scholar]
  9. Cunningham B. C., Wells J. A. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science. 1989 Jun 2;244(4908):1081–1085. doi: 10.1126/science.2471267. [DOI] [PubMed] [Google Scholar]
  10. Estell D. A. Artifacts in the application of linear free energy analysis. Protein Eng. 1987 Dec;1(6):441–442. doi: 10.1093/protein/1.6.441. [DOI] [PubMed] [Google Scholar]
  11. Ferran D. S., Sobel M., Harris R. B. Design and synthesis of a helix heparin-binding peptide. Biochemistry. 1992 Jun 2;31(21):5010–5016. doi: 10.1021/bi00136a014. [DOI] [PubMed] [Google Scholar]
  12. Garrett C., Wataya Y., Santi D. V. Thymidylate synthetase. Catalysis of dehalogenation of 5-bromo- and 5-iodo-2'-deoxyuridylate. Biochemistry. 1979 Jun 26;18(13):2798–2804. doi: 10.1021/bi00580a017. [DOI] [PubMed] [Google Scholar]
  13. Hardy L. W., Finer-Moore J. S., Montfort W. R., Jones M. O., Santi D. V., Stroud R. M. Atomic structure of thymidylate synthase: target for rational drug design. Science. 1987 Jan 23;235(4787):448–455. doi: 10.1126/science.3099389. [DOI] [PubMed] [Google Scholar]
  14. Hardy L. W., Nalivaika E. Asn177 in Escherichia coli thymidylate synthase is a major determinant of pyrimidine specificity. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9725–9729. doi: 10.1073/pnas.89.20.9725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kealey J. T., Santi D. V. Purification methods for recombinant Lactobacillus casei thymidylate synthase and mutants: a general, automated procedure. Protein Expr Purif. 1992 Oct;3(5):380–385. doi: 10.1016/s1046-5928(05)80039-7. [DOI] [PubMed] [Google Scholar]
  16. Kim C. W., Michaels M. L., Miller J. H. Amino acid substitution analysis of E. coli thymidylate synthase: the study of a highly conserved region at the N-terminus. Proteins. 1992 Aug;13(4):352–363. doi: 10.1002/prot.340130407. [DOI] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Matthews D. A., Appelt K., Oatley S. J., Xuong N. H. Crystal structure of Escherichia coli thymidylate synthase containing bound 5-fluoro-2'-deoxyuridylate and 10-propargyl-5,8-dideazafolate. J Mol Biol. 1990 Aug 20;214(4):923–936. doi: 10.1016/0022-2836(90)90346-N. [DOI] [PubMed] [Google Scholar]
  19. Michaels M. L., Kim C. W., Matthews D. A., Miller J. H. Escherichia coli thymidylate synthase: amino acid substitutions by suppression of amber nonsense mutations. Proc Natl Acad Sci U S A. 1990 May;87(10):3957–3961. doi: 10.1073/pnas.87.10.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Montfort W. R., Perry K. M., Fauman E. B., Finer-Moore J. S., Maley G. F., Hardy L., Maley F., Stroud R. M. Structure, multiple site binding, and segmental accommodation in thymidylate synthase on binding dUMP and an anti-folate. Biochemistry. 1990 Jul 31;29(30):6964–6977. doi: 10.1021/bi00482a004. [DOI] [PubMed] [Google Scholar]
  21. Perry K. M., Fauman E. B., Finer-Moore J. S., Montfort W. R., Maley G. F., Maley F., Stroud R. M. Plastic adaptation toward mutations in proteins: structural comparison of thymidylate synthases. Proteins. 1990;8(4):315–333. doi: 10.1002/prot.340080406. [DOI] [PubMed] [Google Scholar]
  22. Perryman S. M., Rossana C., Deng T. L., Vanin E. F., Johnson L. F. Sequence of a cDNA for mouse thymidylate synthase reveals striking similarity with the prokaryotic enzyme. Mol Biol Evol. 1986 Jul;3(4):313–321. doi: 10.1093/oxfordjournals.molbev.a040400. [DOI] [PubMed] [Google Scholar]
  23. Pinter K., Davisson V. J., Santi D. V. Cloning, sequencing, and expression of the Lactobacillus casei thymidylate synthase gene. DNA. 1988 May;7(4):235–241. doi: 10.1089/dna.1988.7.235. [DOI] [PubMed] [Google Scholar]
  24. Santi D. V., Edman U., Minkin S., Greene P. J. Purification and characterization of recombinant Pneumocystis carinii thymidylate synthase. Protein Expr Purif. 1991 Oct-Dec;2(5-6):350–354. doi: 10.1016/1046-5928(91)90093-x. [DOI] [PubMed] [Google Scholar]
  25. Santi D. V., McHenry C. S., Raines R. T., Ivanetich K. M. Kinetics and thermodynamics of the interaction of 5-fluoro-2'-deoxyuridylate with thymidylate synthase. Biochemistry. 1987 Dec 29;26(26):8606–8613. doi: 10.1021/bi00400a017. [DOI] [PubMed] [Google Scholar]
  26. Shapiro R., Danzig M. Acidic hydrolysis of deoxycytidine and deoxyuridine derivatives. The general mechanism of deoxyribonucleoside hydrolysis. Biochemistry. 1972 Jan 4;11(1):23–29. doi: 10.1021/bi00751a005. [DOI] [PubMed] [Google Scholar]
  27. Sirawaraporn W., Sirawaraporn R., Cowman A. F., Yuthavong Y., Santi D. V. Heterologous expression of active thymidylate synthase-dihydrofolate reductase from Plasmodium falciparum. Biochemistry. 1990 Dec 4;29(48):10779–10785. doi: 10.1021/bi00500a009. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES