Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 15;90(18):8687–8691. doi: 10.1073/pnas.90.18.8687

Multiple origins of advanced eusociality in bees inferred from mitochondrial DNA sequences.

S A Cameron 1
PMCID: PMC47423  PMID: 8378349

Abstract

The remarkably high level of colony organization found in the honey bees and stingless bees (family Apidae) is extremely rare among animals. Yet there is controversy over whether these two groups independently evolved advanced eusocial behavior or inherited it from a common ancestor. Phylogenetic analyses of DNA sequence information from the mitochondrial genome (large-subunit ribosomal RNA gene) of representative apid bees suggest that advanced eusocial behavior evolved twice independently within this assemblage. These results depart from previous hypotheses of apid relationships by indicating a close phylogenetic relationship between the primitively eusocial bumble bees and the stingless bees.

Full text

PDF
8687

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cameron J. S. A clinician's view of the classification of glomerulonephritis. Perspect Nephrol Hypertens. 1973;1(Pt 1):63–79. [PubMed] [Google Scholar]
  2. Crozier R. H., Crozier Y. C. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics. 1993 Jan;133(1):97–117. doi: 10.1093/genetics/133.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  4. Hamilton W. D. The genetical evolution of social behaviour. II. J Theor Biol. 1964 Jul;7(1):17–52. doi: 10.1016/0022-5193(64)90039-6. [DOI] [PubMed] [Google Scholar]
  5. Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
  6. Hillis D. M., Huelsenbeck J. P. Signal, noise, and reliability in molecular phylogenetic analyses. J Hered. 1992 May-Jun;83(3):189–195. doi: 10.1093/oxfordjournals.jhered.a111190. [DOI] [PubMed] [Google Scholar]
  7. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  8. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Takahata N. Gene genealogy in three related populations: consistency probability between gene and population trees. Genetics. 1989 Aug;122(4):957–966. doi: 10.1093/genetics/122.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. West-Eberhard M. J. Alternative adaptations, speciation, and phylogeny (A Review). Proc Natl Acad Sci U S A. 1986 Mar;83(5):1388–1392. doi: 10.1073/pnas.83.5.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Winston M. L., Michener C. D. Dual origin of highly social behavior among bees. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1135–1137. doi: 10.1073/pnas.74.3.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES