Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium, which uses a variety of organic chemicals as carbon sources. Here, we report the genome sequence of the Cu1510 isolate from wastewater containing a high concentration of N,N-dimethyl formamide.
GENOME ANNOUNCEMENT
Pseudomonas aeruginosa, which is infectious to plants (1, 2) and animals (3, 4), including human beings (5–7), is widely studied for its multidrug resistance (8–11). It is also used to degrade organic chemicals in wastewater because it can utilize a large range of organic chemicals as carbon sources (12–14) and survive in the presence of multiple metal ions (15–18). N,N-dimethyl formamide, an industrial organic solvent, possesses hepatotoxicity, embryotoxicity, teratogenicity, and possible carcinogenicity (19), but it is difficult to degrade. Here, we present the draft genome sequence of a wild-type strain of P. aeruginosa capable of degrading N,N-dimethyl formamide.
The Cu1510 isolate was selected from wastewater with M9-N,N-dimethyl formamide (DMF) medium containing 10% N,N-dimethyl formamide (the only carbon source) and then cultivated in the LB medium at 37°C overnight. Genomic DNA of Cu1510 was extracted according to the instructions of a Biomiga bacterial genomic DNA (gDNA) kit (product no. GD2411-01). The quality and quantity of DNA were assayed using a K5500 microspectrophotometer (Kaiao) and agarose gel electrophoresis. Genome sequencing was performed at CapitalBio Technology using Illumina technology with a DNA sequencing (DNA-seq) paired-end protocol. A library was prepared with the NEBNext Ultra DNA library prep kit for Illumina, and the instrument used for sequencing was HiSeq 2500. The resulted 15 million reads were assembled with Velvet 1.1 (20) and then refined with SEQuel version 1.0.2 (21). The remaining contigs were submitted to the ProDeGe website (22) for automatic decontamination. e-RGA (23) was applied for genome mapping. The resulting 6,122,906-bp draft genome containing 5,336 genes is rich in G+C content (66.65%). Finally, the assembled sequence was submitted to the National Center for Biotechnology Information (NCBI) Prokaryotic Genome Annotation Pipeline (PGAP) (24) for annotation. A detailed analysis on the P. aeruginosa pathway of DMF biodegradation will be presented in a later essay.
Nucleotide sequence accession numbers.
The genome project was submitted to DDBJ/EMBL/GenBank under the accession no. CP013144. The version described in this paper is the first version, CP013144.1.
ACKNOWLEDGMENTS
The project was supported by 863 program 2012AA022101 released by the Ministry of Science and Technology of China.
We thank Liangliang Chen, Juan Xu, and Zhiling Zhang for their technical assistance.
Footnotes
Citation Yan L, Yan M, Xu L, Wei L, Zhang L. 2016. Draft genome sequence of a Pseudomonas aeruginosa strain able to decompose N,N-dimethyl formamide. Genome Announc 4(1):e01609-15. doi:10.1128/genomeA.01609-15.
REFERENCES
- 1.Kumar A, Munder A, Aravind R, Eapen S, Tümmler B, Raaijmakers JM. 2012. Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol 15:764–779. doi: 10.1111/1462-2920.12031. [DOI] [PubMed] [Google Scholar]
- 2.Hariprasad P, Chandrashekar S, Brijesh SS, Niranjana SR. 2014. Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa. J Basic Microbiol 54:792–801. doi:10.1002/jobm.201200491. [DOI] [PubMed] [Google Scholar]
- 3.Paul W, Reena V, Bonnell JC, DiGiandomenico A, Camara M, Cook K, Peng L, Zha J, Chowdury, Sellman B, Stover CK. 2014. A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models.. Antimicrob Agents Chemother 58:4384–4391. doi: 10.1128/AAC.02643-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Pang Y, Zhang L, Zhou S, Zhoua S, Yama KL, Liub L, Sheen S. 2015. Growth behavior prediction of fresh catfish fillet with Pseudomonas aeruginosa under stresses of allyl isothiocyanate, temperature and modified atmosphere. Food Control 47:326–333. doi: 10.1016/j.foodcont.2014.07.030. [DOI] [Google Scholar]
- 5.Li Y, Zhang X, Wang C, Hu Y, Niu X, Pei D, He Z, Bi Y. 2015. Characterization by phenotypic and genotypic methods of metallo-[beta]-lactamase-producing Pseudomonas aeruginosa isolated from patients with cystic fibrosis. Mol Med Rep 11:494. doi: 10.3892/mmr.2014.2685. [DOI] [PubMed] [Google Scholar]
- 6.Müller FM, Bend J, Huttegger I, Möller A, Schwarz C, Abele-Horn M, Ballmann M, Bargon J, Baumann I, Bremer W, Bruns R, Brunsmann F, Fischer R, Geidel C, Hebestreit H, Hirche TO, Hogardt M, Illing S, Koitschev A, Kohlhäufl M. 2015. S3 guidelines on pulmonary disease in cystic fibrosis; module 1: diagnostics and therapy after initial detection of Pseudomonas aeruginosa/S3-leitlinie “Lungenerkrankung bei mukoviszidose”; modul 1: diagnostik und therapie nach dem ersten nachweis von Pseudomonas aeruginosa. Monatsschr Kinderheilkd 163:590–599. (In German.) doi: 10.1007/s00112-015-3354-3. [DOI] [Google Scholar]
- 7.Johansen HK, Gøtzsche PC. 2008. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis.. Cochrane Database Syst Rev (6):CD001399. doi:10.1002/14651858.CD001399.pub2. [DOI] [PubMed]
- 8.Gilani M, Munir T, Latif M, Rehman S, Ansari M, Hafeez A, Najeeb S, Saad N, Gilani M. 2015. In vitro efficacy of doripenem against Pseudomonas aeruginosa and Acinetobacter baumannii by E-test. J Coll Physicians Surg Pak 25:726–729. doi: 10.2015/JCPSP.726729. [DOI] [PubMed] [Google Scholar]
- 9.Xu Z, Gao Y, He J, Xu W, Jiang M, Jin H. 2015. Effects of azithromycin on Pseudomonas aeruginosa isolates from catheter-associated urinary tract infection. Exp Ther Med 9:569. doi: 10.3892/etm.2014.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Oliver A, Mulet X, López-Causapé C, Juan C. 2015. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Update 21–22:41–59. doi: 10.1016/j.drup.2015.08.002. [DOI] [PubMed] [Google Scholar]
- 11.Cirioni O, Ghiselli R, Silvestri C, Minardi D, Gabrielli E, Orlando F, Rimini M, Brescini L, Muzzonigro G, Guerrieri M, Giacometti A. 2011. Effect of the combination of clarithromycin and amikacin on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. J Antimicrob Chemother 66:1318–1323. doi: 10.1093/jac/dkr107. [DOI] [PubMed] [Google Scholar]
- 12.Kumari S, Chetty D, Ramdhani N, Bux F. 2013. Phenol degrading ability of Rhodococcus pyrinidivorans and Pseudomonas aeruginosa isolated from activated sludge plants in South Africa. J Environ Sci Health 48:947–953. doi: 10.1080/10934529.2013.762740. [DOI] [PubMed] [Google Scholar]
- 13.Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A. 2013. Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Mar Pollut Bull 73:300–305. doi: 10.1016/j.marpolbul.2013.05.002. [DOI] [PubMed] [Google Scholar]
- 14.Choudhary S, Sar P. 2011. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste.. J Hazard Mater 186:336–343. doi: 10.1016/j.jhazmat.2010.11.004. [DOI] [PubMed] [Google Scholar]
- 15.Cornelis P. 2010. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645. doi: 10.1007/s00253-010-2550-2. [DOI] [PubMed] [Google Scholar]
- 16.Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML. 2002. GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287. doi: 10.1046/j.1365-2958.2002.03084.x. [DOI] [PubMed] [Google Scholar]
- 17.Paraneeiswaran A, Shukla SK, Rao TS, Prashanth K. 2014. Removal of toxic Co-EDTA complex by a halophilic solar-salt-pan isolate Pseudomonas aeruginosa SPB-1. Chemosphere 95:503–510. doi: 10.1016/j.chemosphere.2013.09.107. [DOI] [PubMed] [Google Scholar]
- 18.Yin NH, Sivry Y, Avril C, Borensztajn S, Labanowski J, Malavergne V, Lens PNL, Rossano S, Hullebusch EDV. 2014. Bioweathering of lead blast furnace metallurgical slags by Pseudomonas aeruginosa. Int Biodeterior Biodegrad 86:372–381. doi: 10.1016/j.ibiod.2013.10.013. [DOI] [Google Scholar]
- 19.Dar-Bin S, Chia-Chun CC, Tung-Sheng S, Huo-Mu T, Yau-Hui W, Ho-Yuan C. 2007. Mitochondrial DNA alterations in blood of the humans exposed to N,N-dimethylformamide.. Chem Biol Interact 165:211–219. doi: 10.1016/j.cbi.2006.12.008. [DOI] [PubMed] [Google Scholar]
- 20.Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi: 10.1101/gr.074492.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Ronen R, Boucher C, Chitsaz H, Pevzne P. 2012. SEQuel: improving the accuracy of genome assemblies. Bioinformatics 28:i188–i196. doi: 10.1093/bioinformatics/bts219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Tennessen K, Andersen E, Clingenpeel S, Rinke C, Lundberg DS, Han J, Dangl JL, Ivanova N, Woyke T, Kyrpides N. 2015. ProDeGe: a computational protocol for fully automated decontamination of genomes. ISME J 10:269–272. doi: 10.1038/ismej.2015.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Vezzi F, Cattonaro F, Policriti A. 2011. E-RGA: enhanced Reference Guided Assembly of Complex genomes. EMBnet J 17. doi: 10.14806/ej.17.1.208. [DOI] [Google Scholar]
- 24.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufo S, Li W. 2013. Prokaryotic genome annotation pipeline. The NCBI handbook, 2nd ed. National Center for Biotechnology Information, Bethesda, MD. [Google Scholar]
