Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Sep 15;90(18):8752–8756. doi: 10.1073/pnas.90.18.8752

Recombinant human insulin-like growth factor I exerts a trophic action and confers glutamate sensitivity on glutamate-resistant cerebellar granule cells.

P Calissano 1, M T Ciotti 1, L Battistini 1, C Zona 1, A Angelini 1, D Merlo 1, D Mercanti 1
PMCID: PMC47436  PMID: 8104340

Abstract

Cerebellar granule cells grown in the presence of a serum complex differentiate but are resistant to the lethal action of excitatory amino acids. When these cells are grown also in the presence of insulin-like growth factor I (IGF-I) they become fully susceptible to the toxic, lethal action of glutamate. The glutamate-sensitizing action of IGF-I is dependent on concentration (half-maximal effect at 2-4 ng/ml) and time (half-maximal effect at 2-4 days in vitro) and is paralleled by the appearance of functionally active, glutamate-activated, Ca2+ channels and of voltage-gated Na+ and late K+ channels. IGF-I-induced glutamate sensitivity is rapidly reversible (t1/2 = 30-60 min) after removal of this somatomedin. The action of IGF-I is not mimicked by IGF-II, nerve growth factor, basic or acidic fibroblast growth factor, platelet-derived growth factor, or tumor necrosis factor alpha. We postulate that the constitutive phenotype of cerebellar granule cells is glutamate-resistant and becomes responsive to excitatory amino acids under the action of epigenetic cues among which IGF-I may be one of those operative in vivo.

Full text

PDF
8752

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson I. K., Edwall D., Norstedt G., Rozell B., Skottner A., Hansson H. A. Differing expression of insulin-like growth factor I in the developing and in the adult rat cerebellum. Acta Physiol Scand. 1988 Feb;132(2):167–173. doi: 10.1111/j.1748-1716.1988.tb08314.x. [DOI] [PubMed] [Google Scholar]
  2. Balázs R., Hack N., Jørgensen O. S. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci Lett. 1988 Apr 22;87(1-2):80–86. doi: 10.1016/0304-3940(88)90149-8. [DOI] [PubMed] [Google Scholar]
  3. Bartlett W. P., Li X. S., Williams M., Benkovic S. Localization of insulin-like growth factor-1 mRNA in murine central nervous system during postnatal development. Dev Biol. 1991 Sep;147(1):239–250. doi: 10.1016/s0012-1606(05)80021-1. [DOI] [PubMed] [Google Scholar]
  4. Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bondy C. A. Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J Neurosci. 1991 Nov;11(11):3442–3455. doi: 10.1523/JNEUROSCI.11-11-03442.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Choi D. W. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988 Oct;1(8):623–634. doi: 10.1016/0896-6273(88)90162-6. [DOI] [PubMed] [Google Scholar]
  7. Dichter M. A., Zona C. Calcium currents in cultured rat cortical neurons. Brain Res. 1989 Jul 17;492(1-2):219–229. doi: 10.1016/0006-8993(89)90904-9. [DOI] [PubMed] [Google Scholar]
  8. Eboli M. L., Ciotti M. T., Mercanti D., Calissano P. Differential involvement of protein kinase C in transmitter release and response to excitatory amino acids in cultured cerebellar neurons. Neurochem Res. 1993 Feb;18(2):133–138. doi: 10.1007/BF01474675. [DOI] [PubMed] [Google Scholar]
  9. Garthwaite G., Hajós F., Garthwaite J. Ionic requirements for neurotoxic effects of excitatory amino acid analogues in rat cerebellar slices. Neuroscience. 1986 Jun;18(2):437–447. doi: 10.1016/0306-4522(86)90164-8. [DOI] [PubMed] [Google Scholar]
  10. Hagiwara S., Ohmori H. Studies of single calcium channel currents in rat clonal pituitary cells. J Physiol. 1983 Mar;336:649–661. doi: 10.1113/jphysiol.1983.sp014603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  12. Keller B. U., Hollmann M., Heinemann S., Konnerth A. Calcium influx through subunits GluR1/GluR3 of kainate/AMPA receptor channels is regulated by cAMP dependent protein kinase. EMBO J. 1992 Mar;11(3):891–896. doi: 10.1002/j.1460-2075.1992.tb05127.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Levi G., Aloisi F., Ciotti M. T., Gallo V. Autoradiographic localization and depolarization-induced release of acidic amino acids in differentiating cerebellar granule cell cultures. Brain Res. 1984 Jan 2;290(1):77–86. doi: 10.1016/0006-8993(84)90737-6. [DOI] [PubMed] [Google Scholar]
  14. MacDonald J. F., Mody I., Salter M. W. Regulation of N-methyl-D-aspartate receptors revealed by intracellular dialysis of murine neurones in culture. J Physiol. 1989 Jul;414:17–34. doi: 10.1113/jphysiol.1989.sp017674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mercanti D., Galli C., Liguori M., Ciotti M. T., Gullà P., Calissano P. Identification of the Serum Complex Which Induces Cerebellar Granule Cell In Vitro Differentiation and Resistance to Excitatory Amino Acids. Eur J Neurosci. 1992;4(8):733–744. doi: 10.1111/j.1460-9568.1992.tb00182.x. [DOI] [PubMed] [Google Scholar]
  16. Nissley P., Lopaczynski W. Insulin-like growth factor receptors. Growth Factors. 1991;5(1):29–43. doi: 10.3109/08977199109000269. [DOI] [PubMed] [Google Scholar]
  17. Rosenberg P. A. Catecholamine toxicity in cerebral cortex in dissociated cell culture. J Neurosci. 1988 Aug;8(8):2887–2894. doi: 10.1523/JNEUROSCI.08-08-02887.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rotwein P., Burgess S. K., Milbrandt J. D., Krause J. E. Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci U S A. 1988 Jan;85(1):265–269. doi: 10.1073/pnas.85.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Torres-Aleman I., Pons S., Santos-Benito F. F. Survival of Purkinje Cells in Cerebellar Cultures is Increased by Insulin-like Growth Factor I. Eur J Neurosci. 1992;4(9):864–869. doi: 10.1111/j.1460-9568.1992.tb00196.x. [DOI] [PubMed] [Google Scholar]
  20. Wroblewski J. T., Nicoletti F., Costa E. Different coupling of excitatory amino acid receptors with Ca2+ channels in primary cultures of cerebellar granule cells. Neuropharmacology. 1985 Sep;24(9):919–921. doi: 10.1016/0028-3908(85)90046-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES