Skip to main content
Frontiers in Cellular and Infection Microbiology logoLink to Frontiers in Cellular and Infection Microbiology
. 2016 Feb 8;6:14. doi: 10.3389/fcimb.2016.00014

The Basics of Bacteriuria: Strategies of Microbes for Persistence in Urine

Deepak S Ipe 1, Ella Horton 1, Glen C Ulett 1,*
PMCID: PMC4744864  PMID: 26904513

Abstract

Bacteriuria, the presence of bacteria in urine, is associated with asymptomatic, as well as symptomatic, urinary tract infection (UTI). Bacteriuria underpins some of the dynamics of microbial colonization of the urinary tract, and probably impacts the progression and persistence of infection in some individuals. Recent molecular discoveries in vitro have elucidated how some key bacterial traits can enable organisms to survive and grow in human urine as a means of microbial fitness adaptation for UTI. Several microbial characteristics that confer bacteruric potential have been identified including de novo synthesis of guanine, relative resistance to D-serine, and catabolism of malic acid. Microbial characteristics such as these are increasingly being defined through the use of synthetic human urine (SHU) in vitro as a model to mimic the in vivo environment that bacteria encounter in the bladder. There is considerable variation in the SHU model systems that have been used to study bacteriuria to date, and this influences the utility of these models. In this review, we discuss recent advances in our understanding of bacteruric potential with a focus on the specific mechanisms underlying traits that promote the growth of bacteria in urine. We also review the application of SHU in research studies modeling UTI and discuss the chemical makeup, and benefits and limitations that are encountered in utilizing SHU to study bacterial growth in urine in vitro.

Keywords: bacteriuria, asymptomatic bacteriuria, urinary tract infection, urine, urinalysis, uropathogen, synthetic human urine, artificial urine

Introduction: bacteriuria and urinary tract infection

“Asymptomatic Bacteriuria” (ABU or ASB) is synonymous with asymptomatic Urinary Tract Infection (UTI) in defining the isolation of a specified semi-quantitative count of bacteria in an appropriately collected urine specimen from a person without signs or symptoms related to UTI (Rubin et al., 1992; Nicolle et al., 2005). Bacteriuria is a marker for symptomatic UTI (sUTI) and assists in grading the severity of infection. Establishment of bacteriuria depends on entry of an organism with bacteruric potential into the urinary tract and can persist for months or years. Bacteruric potential encompasses microbial survival, growth, and re-growth in urine, and endurance of host defense mechanisms including dilution, voiding, frequent flushing (O'grady and Cattell, 1966a,b), and antimicrobial constituents such as Tamm-Horsfall glycoprotein (aka uromodulin), and P blood group antigen (Hand et al., 1971; Lomberg et al., 1983; Bates et al., 2004). Bacteruric potential can thus influence the persistence of ABU and sUTI. Here, we analyze the differences in microbial strategies used for growth in urine and the methods for modeling bacteriuria using synthetic human urine (SHU).

Microbial bacteruric potential and host dynamics

Recent reviews have focused on the pathogenesis of acute sUTI (Nielubowicz and Mobley, 2010; Hannan et al., 2012; Ulett et al., 2013), and ABU (Ipe et al., 2013; Schneeberger et al., 2014) and will not be revisited here. We will focus on bacteriuria specifically; the progression of which depends on microbe traits as well as host factors. Most individuals who suffer persistent UTI do not harbor the same strain of organism over time (Hooton et al., 2000), implying that turnover of causal organisms is dynamic. Replacement of colonizing strains during bacteriuria has been studied for Escherichia coli, the most common cause of ABU (Ipe et al., 2013). Long-term bacteriuria appears to select for attenuated virulence phenotypes of colonizing strains (Salvador et al., 2012). While most microbes are killed by urine, different organisms have distinct bacteruric potential. Several traits can affect microbial growth in urine. Antibiotics stop the progression of bacteriuria (Schneeberger et al., 2012) but patients infected with E. coli experience re-colonization with the same or similar organism at high rates (Dalal et al., 2009). This highlights the dynamic nature of bacteriuria and the role of therapeutic intervention [that is not recommended as routine for ABU (Nicolle, 2014)]. Other factors that are associated with the promotion of long-term bacteriuria are defects in immune signaling pathways such as TLRs (Ragnarsdóttir and Svanborg, 2012). Thus, persistence of bacteriuria relates to microbial bacteruric potential and host characteristics/dynamics including genetic immunodeficiency, re-current infection or strain replacement, and antibiotic therapy.

Microbial metabolism and growth fitness in urine: knowledge from E. coli

The progression of bacteriuria depends on a microbes' ability to survive the antimicrobial properties of urine. Urine survival and growth maintains a pool of colonizing organisms regardless of adherence to host cells, and urodynamic properties (urine flow rates, voiding) that differ between individuals (Wullt et al., 1998). Non-voided organisms in residual urine can grow and re-grow to maintain infection. Discoveries using ABU microbes have shaped our understanding of how bacteriuria progresses. ABU E. coli strain 83972 displays robust fitness for urine growth (Klemm et al., 2006; Roos et al., 2006b) though this is not a defining feature of all ABU E. coli, and is observed in some uropathogenic E. coli (UPEC) (Stamey and Mihara, 1980; Alteri and Mobley, 2007; Alteri et al., 2009; Aubron et al., 2012). Poor urine growth has been reported for some fecal E. coli isolates (Stamey and Mihara, 1980; Gordon and Riley, 1992). ABU E. coli 83972 has been investigated as a prophylactic means to treat acute sUTI (Hull et al., 2000; Wullt, 2003; Roos et al., 2006a; Sundén et al., 2006; Klemm et al., 2007; Watts et al., 2012a). The metabolic basis for urine growth of ABU E. coli 83972 involves transport and degradation pathways for galacturonate, glucuronide and galactonate (Roos et al., 2006b), and antioxidant defense mechanisms (Aubron et al., 2012); the details are described elsewhere (Roos et al., 2006a,b). More recently, analysis of ABU E. coli 83972 re-isolates indicated marked versatility of metabolic pathways in urine, including utilization of amino acids, hexuronates or (deoxy-) ribonucleosides as an adaptation to individual hosts (Zdziarski et al., 2010). This underlines the metabolic versatility of E. coli in urine in response to host-specific metabolic constraints. guaA and argC were shown to be critical for urine growth and a lack of urinary guanine (or derivatives), combined with an inability of E. coli to synthesize these compounds de novo, prevents the synthesis of other guanine (or derivative)-dependent products that are required for growth (Russo et al., 1996). Separate from guanine, argC and carAB mutants had reduced growth in urine in a E. coli transposon mutagenesis study, illustrating a role for arginine metabolism (Vejborg et al., 2012).

Knowledge from bacteria other than E. coli

Clinical isolates of Enterococcus faecalis, Proteus vulgaris, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus saprophyticus, and Streptococcus agalactiae have been shown to grow in human urine (Table 1). However, little is known about the mechanisms used by these organisms for urine growth. For E. faecalis there are some similarities to E. coli; E. faecalis expresses multiple virulence genes in urine (Shepard and Gilmore, 2002) including genes for iron transport (Vebø et al., 2010). Iron utilization mechanisms have been reported in urine growth assays with E. coli (Watts et al., 2012b). Limiting manganese may be important in restricting E. faecalis urine growth (Järvisalo et al., 1992; Low et al., 2003; Vebø et al., 2010). In contrast to activation of pathways described for E. coli, E. faecalis activates citrate and aspartate metabolic pathways, and represses glucose uptake (Vebø et al., 2010). Human urine contains more citrate than glucose (Shaykhutdinov et al., 2009; Wishart et al., 2009; Bouatra et al., 2013), which could promote growth of E. faecalis. However, human urine is highly variable in chemical constituency and different levels of components such as glucose may influence microbial growth; for example, glucosuria enhances growth of E. coli. E. faecalis also upregulates genes for utilization of sucrose (and perhaps fructose), another constituent of urine (Tasevska et al., 2005; Bouatra et al., 2013). Other E. faecalis genes thought to function in urine growth include those related to import of phosphorylated sugars and glycerol, N-acetyl glucosamine metabolism (Vebø et al., 2010), cysteine synthase, and pathways for conversion of aspartate and α-ketoglutarate to oxaloacetate and glutamate. Urinary aspartate may be used for nitrogen metabolism (Guo and Li, 2009). E. faecalis is auxotrophic for multiple amino acids but human urine contains several amino acids including arginine, glutamate, glycine, and leucine (Guo and Li, 2009; Bouatra et al., 2013).

Table 1.

Summary of traits that contribute to bacteruric potential in microbes.

Trait that confers bacteruric potential Bacterial species References
Ability to utilize human urine as a substrate for growth E. coli Gordon and Riley, 1992; Russo et al., 1996; Roesch et al., 2003; Snyder et al., 2004; Johnson et al., 2006; Roos et al., 2006a; Alteri and Mobley, 2007; Klemm et al., 2007; Aubron et al., 2012; Vejborg et al., 2012; Watts et al., 2012b; Hryckowian et al., 2015; King et al., 2015; Shields-Cutler et al., 2015
E. faecalis Shepard and Gilmore, 2002; Vebø et al., 2010; La Rosa et al., 2012
P. vulgaris Nickel et al., 1985; Carlsson et al., 2001
P. aeruginosa Nickel et al., 1985; Carlsson et al., 2001; Storer et al., 2011
K. pneumoniae Storer et al., 2011; Russo et al., 2015
S. saprophyticus Sakinç et al., 2009
S. agalactiae Ipe et al., 2016
Tolerance to high levels of D-serine S. saprophyticus Sakinç et al., 2009
Requirement for dsda for rapid urine growth E. coli Hryckowian et al., 2015
Capacity for synthesis of guanine-dependent products critical for survival in urine E. coli Russo et al., 1996
Expression of iron acquisition systems for growth in nutrient limiting environment E. coli Alteri and Mobley, 2007; Watts et al., 2012b; Shields-Cutler et al., 2015
E. faecalis Vebø et al., 2010
Osmoadaption, and intracellular accumulation of glycine betaine E. coli Chambers and Lever, 1996; Deutch et al., 2006
Adaptation of central metabolism to lactate, citrate and amino acids as carbon sources; flux through pyruvate metabolism, TCA cycle P. aeruginosa Tielen et al., 2013; Berger et al., 2014
Malic acid metabolism S. agalactiae Ipe et al., 2016

An analysis of metabolic traits of P. aeruginosa using synthetic urine revealed adaptation in central metabolism to lactate, citrate, and amino acids as carbon sources, and the induction of amino acid utilization pathways (Tielen et al., 2013). Metabolic flux analysis showed the use of the Entner-Doudoroff pathway with respiratory metabolism, with the pentose phosphate pathway being used exclusively for biosynthesis. Flux through pyruvate metabolism, the tricarboxylic acid cycle, and the glyoxylate shunt was highly variable, and likely caused by adaptive processes in individual strains during infection (Berger et al., 2014).

Phenotype metabolic arrays were recently reported for ABU S. agalactiae (Ipe et al., 2016). Comparison with S. agalactiae strains that were unable to grow in urine showed that malic acid catabolism was important for growth in urine. Malic acid utilization is related to the malic enzyme metabolic pathway that catalyzes the oxidative decarboxylation of malate (a component of human urine depending on diet) to pyruvate and CO2. This is related to malolactic fermentation, a bacterial metabolic process typically associated with wine deacidification (Landete et al., 2010).

Three ways to survive in urine: resistance, acquisition, and osmoadaption

Urine is naturally antimicrobial; hypertonicity with low pH (averaging ~6.0) and high concentrations of urea inhibit most bacteria (Chambers and Lever, 1996; Kucheria et al., 2005). Nitrite in mildly acidified urine inhibits the growth of some uropathogens (Carlsson et al., 2001), and other abundant proteins such as Tamm-Horsfall glycoprotein are antimicrobial (Raffi et al., 2005; Säemann et al., 2005). Recently, the antimicrobial properties of urine were shown to include specific inhibition of both expression and function of UPEC type 1 pili (Greene et al., 2015), and downregulation of capsule genes (King et al., 2015). Individualistic urinary chemical features can also affect the antimicrobial properties of some antimicrobial urinary proteins such as siderocalin (Shields-Cutler et al., 2015). Bacteria that can endure urine antimicrobial properties do so through various means; for example, S. saprophyticus tolerates high concentrations of D-serine, which is abundant in urine and bacteriostatic toward organisms that lack a D-serine deaminase (Cosloy and McFall, 1973; Hryckowian et al., 2015). Iron limitation and the presence iron chelators such as lactoferrin (Weinberg, 1978) compounds the problem of nutritional immunity for microbes (Hood and Skaar, 2012) especially during states of increased iron chelator production (Gonzalez-Chavez et al., 2009; Soler-García et al., 2009). Siderophores confer bacteruric potential to E. coli (Håversen et al., 2000; Snyder et al., 2004; Alteri and Mobley, 2007; Hagan and Mobley, 2009; Garcia et al., 2011; Watts et al., 2012b) and several genes encoding factors involved in iron transport are upregulated in E. faecalis during urine growth (Vebø et al., 2010). Siderophores may also act as ligands for cations other than iron, such as copper (Chaturvedi et al., 2012). Variable resistance to urinary defense molecules (e.g., nitrite, ascorbic acid) could influence bacteruric potential but little is known beyond the effects of these toward the chemical properties of urine (Carlsson et al., 2001). Finally, many organisms are probably unable to survive the oxygen concentrations encountered in the bladder (Leonhardt and Landes, 1963; Clarke et al., 1985).

Urea is abundant in urine and is antibacterial (Sobel, 1985). Osmoadaptive systems enable some bacteria to survive the stressful hypertonic conditions of urine. Bacterial accumulation of osmotically compatible solutes that are present in urine (e.g., betaines) confers bacteruric potential by effectively enabling microbes to resist dehydration (Chambers and Lever, 1996; Deutch et al., 2006). Osmoadaptive systems respond to changes in tonicity in urine, and support survival by counteracting low pH, high urea concentrations and hypertonicity (Chambers and Lever, 1996). For E. coli, glycine betaine is a central osmoprotectant to resist urea toxicity, and its accumulation is essential to adaptive responses to osmotic stress (Kunin et al., 1992; Chambers and Lever, 1996). E. coli increases the activity of potassium transport systems that encompass TrkG, TrkH, and Kup (Meury et al., 1985), or Kdp (Laimins et al., 1978) to counteract osmotic stress. Other systems involve trehalose as an organic osmolyte; its induction is triggered in conditions of high potassium (and glutamate) (Strøm and Kaasen, 1993), and its accumulation elicits the release of potassium from the cell (Dinnbier et al., 1988). This might aid growth since trehalose can be used as a carbon source (Gutierrez et al., 1989; Styrvold and Strøm, 1991). OmpR regulates osmoadaptive genes in E. coli (Barron et al., 1986). Osmotic stress suppresses the expression of fimbriae and flagellin (Kunin et al., 1994, 1995). Future studies of bacteria other than E. coli that can grow in urine will elucidate additional mechanisms of resistance to urinary antimicrobial properties, nutrient acquisition and metabolism, and osmoadaption.

Between a rock and a hard-place: the bladder mucosa-lumen interface of immune surveillance and bacteriuria

Inflammation is a critical part of sUTI pathogenesis (Hannan et al., 2012; Ulett et al., 2013) and involves thousands of genes that drive antibacterial responses within hours of infection (Duell et al., 2012; Tan et al., 2012; Carey et al., 2016). For example, antimicrobial peptides produced by the bladder are important for protection against infection (Chromek et al., 2006). Microbes must survive these inflammatory events. Urine is a “Hard-place” for microbes to survive, as discussed above. Tissue inflammation in the bladder represents a “rock” of antimicrobial responses for defense against UTI and, for ABU, can encompass pyuria, cytokine release (IL-1α, -6, and -8), and antibody production, which has been documented in elderly adults, as reviewed elsewhere (Nicolle, 1997). Excessive inflammation may contribute to chronic sUTI (Hannan et al., 2010) and some acute sUTI symptoms have been linked to specific inflammatory events (Rudick et al., 2010). However, the benign, minimally inflammatory nature of ABU is reflected in the lack of morbidity in individuals who do not receive therapy (Nicolle, 1997, 1999; Ariathianto, 2011). Details of how ABU bacteria induce and minimize inflammation offer insight into how microbial modulation of host defense may promote bacteriuria. ABU E. coli minimizes inflammation by averting adherence due to a lack of fimbriae expression; this limits immune activation (Roos et al., 2006b) and results in long-term ABU (Arthur et al., 1989; Andersson et al., 1991). Grönberg-Hernandez et al. showed that ABU E. coli activates IRF3 and TLR4-dependent signaling, however, triggering a response that depends on host genetic background (Grönberg-Hernández et al., 2011); the IRF3-dependent signaling pathway is critical for distinguishing pathogens from the normal flora (Fischer et al., 2010). TLR4 senses P-fimbriated E. coli (Frendéus et al., 2001), and TLR4 mutations may favor ABU by impeding innate responses (Svanborg et al., 2006). This raises the question of whether ABU may influence subsequent encounter(s) with other uropathogens. One study on streptococcal UTI showed an influence on the severity of subsequent E. coli UTI in mice (Kline et al., 2012). Thus, immune activation triggered by ABU might affect subsequent sUTI caused by diverse pathogens. These data offer some parallel to clinical observations that patients with E. coli ABU suffer re-colonization at high rates following therapy (Dalal et al., 2009).

Modeling bacteriuria in vitro: synthetic human urine (SHU)

Urine is unique from a microbial perspective and its chemical makeup, distinct from all other bodily fluids, has been modeled for studying the growth of microbes for 50 years (O'grady and Pennington, 1966). Urine has a low pH and a high osmolality due to the presence of salts and urea (Kucheria et al., 2005; Sheewin, 2011). The peptides, proteins, and organic acids present in urine may be metabolized by microbes (Decramer et al., 2008). Urine is dynamic in flow rate and composition, which changes subject to diet, age, gender and health status, and disease. Decreased levels of THP, for example, are associated with diabetes (Torffvit and Agardh, 1993) and infection (Ronald and Ludwig, 2001). Data on microbial traits that afford bacteruric potential have, in many cases, been derived from studies using SHU. Eight original SHU media recipes were described between 1971 and 2010: as summarized according to research application and composition in Table 2.

Table 2.

Original and subsequent studies using Synthetic Human Urine (SHU) (A), and related SHU constituents, and proposed composite SHU (B).

A. Original study1 Focus of the research application Microbes or cell types Relevance Reference(s) citing the original study
1. Physiology (Aurora et al., 1980) Understanding the development of calcium oxalate monohydrate precipitation N/A Urolithiasis Mayrovitz and Sims, 2001
2. Infection (Brooks and Keevil, 1997) Development of SHU to investigate the growth of urinary pathogens E. coli, P. aeruginosa, P. mirabilis, S. epidermidis, C. albicans UTI Darouiche et al., 2008; Wernli et al., 2013; Azevedo et al., 2014; Lehman and Donlan, 2015; Wilks et al., 2015
3. Physiology (Burns and Finlayson, 1980) Description of standard SHU for in vitro urolithiasis assays N/A Urolithiasis Brown et al., 1989; Rodgers and Wandt, 1991; Opalko et al., 1997; Mayrovitz and Sims, 2001; Christmas et al., 2002; 2(Isaacson, 1969; Barker et al., 1974; Rose, 1975; Miller et al., 1977; Doremus et al., 1978; Gardner and Doremus, 1978)
4. Cell Biology (Chutipongtanate and Thongboonkerd, 2010) Comparison of multiple SHU media, and study in epithelial cell culture assays Kidney epithelial cells Cell Biology 2,3(Brown et al., 1989; Brooks and Keevil, 1997; Opalko et al., 1997; Grases and Llobera, 1998; Mayrovitz and Sims, 2001; Christmas et al., 2002); (Samaranayake et al., 2014)
5. Infection and Physiology (Griffith et al., 1976) Investigation of infection-induced urinary stones E. coli, P. aeruginosa, P. mirabilis, Citrobacter koseri, Proteus rettgeri, Providencia stuartii, Morganella morganii, Klebsiella oxytoca, UTI, and Urolithiasis Davis et al., 1989, 1991; Martino et al., 2003; Dalhoff et al., 2011; Phuengkham and Nasongkla, 2015. 4Cited by: (Domergue et al., 2005; Mabbett et al., 2009; Ong et al., 2009, 2010). 4Cited by: (Watts et al., 2010; Jain et al., 2007). 4Cited by: (Silva et al., 2010; Rane et al., 2014; Negri et al., 2015); 2(Robertson et al., 1968)
6. Infection (Minuth et al., 1976) Measurement of the antimicrobial efficacy of gentamicin in SHU E. coli, P. aeruginosa UTI Mansouri and Darouiche, 2008; Sako et al., 2014
7. Physiology (Putnam et al., 1971) Characterization of urinary constituents N/A General No citations published
8. Physiology (Gardner and Doremus, 1978) Study of calcium oxalate crystallization N/A Urolithiasis Robertson et al., 1981. 4Cited by: (Robertson and Scurr, 1986)
B. Constituent (n)5 Mean Conc. (Range)6 Composite7 References Citing Constituent
NaCl 8/8 113.3 (54–231) mM 100 mM Griffith et al., 1976; Minuth et al., 1976; Gardner and Doremus, 1978; Aurora et al., 1980; Burns and Finlayson, 1980; Robertson and Scurr, 1986; Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
Na2SO4 8/8 17.0 (9.0–155,800) mM 17.0 mM Griffith et al., 1976; Minuth et al., 1976; Gardner and Doremus, 1978; Aurora et al., 1980; Burns and Finlayson, 1980; Robertson and Scurr, 1986; Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
pH 7/8 6.0 (5.7–7.2) 5.5–6.0 Griffith et al., 1976; Minuth et al., 1976; Gardner and Doremus, 1978; Burns and Finlayson, 1980; Robertson and Scurr, 1986; Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
Urea 6/8 281 (170–500) mM 280 mM Griffith et al., 1976; Minuth et al., 1976; Gardner and Doremus, 1978; Aurora et al., 1980; Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
KCl 6/8 58.5 (21.5–162.7) mM 38.0 mM Griffith et al., 1976; Minuth et al., 1976; Aurora et al., 1980; Burns and Finlayson, 1980; Robertson and Scurr, 1986; Chutipongtanate and Thongboonkerd, 2010
CaCl2 6/8 5.3 (2.5–12.0) mM 4.0 mM Griffith et al., 1976; Minuth et al., 1976; Burns and Finlayson, 1980; Robertson and Scurr, 1986; Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
Creatinine 5/8 8.7 (4.0–13.2) mM 9.0 mM Griffith et al., 1976; Minuth et al., 1976; Aurora et al., 1980; Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
Na3C6H5O7 5/8 3.4 (2.2–5.0) mM 3.4 mM Griffith et al., 1976; Minuth et al., 1976; Burns and Finlayson, 1980; Robertson and Scurr, 1986; Chutipongtanate and Thongboonkerd, 2010
NH4Cl 5/8 36.6 (15.0–86.8) mM 20.0 mM Griffith et al., 1976; Minuth et al., 1976; Robertson and Scurr, 1986; Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
MgSO4 5/8 3.2 (2.0–5.9) mM 3.2 mM Aurora et al., 1980; Burns and Finlayson, 1980; Robertson and Scurr, 1986; Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
Na2C2O4 5/8 0.38 (0.1–1.2) mM 0.18 mM Griffith et al., 1976; Minuth et al., 1976; Burns and Finlayson, 1980; Chutipongtanate and Thongboonkerd, 2010
NaH2PO4 4/8 20.9 (3.6–43.6) mM 3.6 mM Aurora et al., 1980; Burns and Finlayson, 1980; Robertson and Scurr, 1986; Chutipongtanate and Thongboonkerd, 2010
Na2HPO4 4/8 6.5 (6.1–186,800) mM 6.5 mM Gardner and Doremus, 1978; Aurora et al., 1980; Robertson and Scurr, 1986; Chutipongtanate and Thongboonkerd, 2010
KH2PO4 3/8 16.0 (7.0–20.6) mM 16.0 mM Griffith et al., 1976; Minuth et al., 1976; Brooks and Keevil, 1997
C5H4N4O3 3/8 0.6 (0.4–1.0) mM 0.6 mM Aurora et al., 1980; Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
NaHCO3 2/8 13.5 (2.0–25.0) mM 13.5 mM Brooks and Keevil, 1997; Chutipongtanate and Thongboonkerd, 2010
MgCl2.6H2O 2/8 3.2 (3.2) mM 3.2 mM Griffith et al., 1976; Minuth et al., 1976
Osmolality 2/8 586 (446–725) mOsm/kg 600 mOsm/kg Minuth et al., 1976; Chutipongtanate and Thongboonkerd, 2010
C6H8O7 2/8 1.7 (1.4–2.0) mM Aurora et al., 1980; Brooks and Keevil, 1997
TSB8 2/8 2.0% (1.0–5.0%) (v/v) Griffith et al., 1976; Minuth et al., 1976; Torzewska et al., 2003, 2014; Torzewska and Rózalski, 2014, 2015
NH3OH 1/8 17.1 mM Aurora et al., 1980
C9H9NO3 1/8 2.8 mM Aurora et al., 1980
K2HPO4 1/8 7.0 mM Brooks and Keevil, 1997
C3H6O3 1/8 1.1 mM 1.1 mM Brooks and Keevil, 1997
FeSO4.7H2O 1/8 0.005 mM 0.005 mM Brooks and Keevil, 1997
K3C6H5O7 1/8 2752000 mM Gardner and Doremus, 1978
Mg(NO3)2 1/8 2.5 mM Gardner and Doremus, 1978
Peptone8 1/8 0.1% (w/v) Brooks and Keevil, 1997
Yeast extract8 1/8 0.0005% (w/v) Brooks and Keevil, 1997
Glucose 0/8 1.0% (0.3–2.0%) (w/v) Uppuluri et al., 2009; Silva et al., 2010; Negri et al., 2012, 2015
Sucrose 0/8 0.002% (w/v) Wernli et al., 2013
Lactose 0/8 0.002% (w/v) Wernli et al., 2013
LB8 0/8 3.5% (2.5–5.0%) (v/v) Martino et al., 2003; Domergue et al., 2005; Wenzler-Röttele et al., 2006; Ong et al., 2009, 2010; Ipe et al., 2016
Dextrose8 0/8 3.4% (0.3–8.0%) (w/v) Domergue et al., 2005; Jain et al., 2007; Negri et al., 2011
THB8 0/8 2.5% (v/v) Ipe et al., 2016
YNB8 0/8 5.0% (5.0–5.0%) (v/v) Jain et al., 2007; Uppuluri et al., 2009
SC Broth8 0/8 5.0% (v/v) Domergue et al., 2005
Nutrient Broth8 0/8 1.2% (0.4–2.0%) (v/v) Wenzler-Röttele et al., 2006; Sako et al., 2014
Gelatine8 0/8 1.0% (w/v) Wenzler-Röttele et al., 2006
Casamino Acids, Bacto8 0/8 0.1% (v/v)
1

Original study of Robinson et al. (1984) cited by Lee et al. (1995) does not provide a recipe;

2

Reference(s) included in original study (minimal recipe details in reference citing original study);

3

Original studies of Brooks and Keevil (1997) and Grases and Llobera (1998) cited by Chutipongtanate and Thongboonkerd (2010) provide a recipe;

4

Cited by: these references cite the immediate preceding reference rather than the original study;

5

The number of original studies (n/8) that defined the component in their SHU recipe;

6

Refers to Average Concentration, and (Concentration Range). Study of Robertson and Scurr (1986) was used to calculate Mean Concentration, and (Concentration Range) instead of Original Study of Putnam et al. (1971) because Putnam et al. (1971) does not provide a SHU recipe;

7

Proposed Composite SHU Media Concentrations are based on average values in referenced studies, and most compare closely to the typical human urine chemical composition as reported in Putnam et al. (1971) (e.g., NaCl 137 mM, Urea 223 mM, KCl 22 mM, Creatinine 13.3 mM, MgSO4 6.5 mM). In some cases (e.g., Na2HPO4, Na2SO4, KCl, Na2C2O4) the means and composite SHU values are chosen to exclude extreme upper range values from Gardner and Doremus (1978), Robertson and Scurr (1986).

8

References cited for components are original studies only, excepting for these components, for which all published studies using these components are cited. The proposed composite SHU omits Trypticase Soy Broth (TSB), peptone, LB, THB, and Nutrient Broth (undefined), Yeast Nitrogen Base (YNB) and Synthetic Complete (SC) Broth (for fungi), but includes 0.1% v/v Casamino Acids, Bacto (20% stock solution; BD) to attain a chemically defined minimal SHU medium, with the addition of 0.2% v/v (10% stock solution) yeast extract as a proposed supplement for fastidious bacteria including Streptococcus, or 2.0% w/v dextrose and 5.0% v/v YNB for fungi.

SHU offers several advantages compared to normal human urine collected from healthy adults for research assays ex vivo; it avoids the issue of variable chemical composition encountered with fresh human urine; variation in urinary constituents between individuals (Bouatra et al., 2013) is a challenge for standardizing research studies. Methods for “normalizing” fresh human urine include pooling samples and adjusting dilution/concentration according to creatinine concentration, specific gravity, and osmolality. The most widely used method is creatinine adjustment (Barr et al., 2005), however no bacteriuria research studies to date have applied these methods for normalizing, and the effects on data interpretation are unknown. Volume limits have been difficult for some studies (Davis et al., 1982). As a surrogate model, the benefits of SHU are defined by how closely it can reflect the chemical complexity of fresh human urine. Urine from a healthy adult contains glucose (0.2–0.6 mM) (Shaykhutdinov et al., 2009), creatine (0.38–55.6 mM; Barr et al., 2005; Shaykhutdinov et al., 2009), and glycine with low levels of other amino acids such as D-serine (Huang et al., 1998; Pätzold et al., 2005), histidine, glutamine, methionine, proline, glutamate, arginine, cysteine, and branched chain amino acids (Guo and Li, 2009; Vebø et al., 2010). It contains trace fatty acids, citrate (1.0–2.0 mM) (Wishart et al., 2009), sucrose (70–200 μM) (Tasevska et al., 2005), and manganese (nM range) (Järvisalo et al., 1992).

To standardize SHU composition for bacteriuria studies, we propose a composite SHU medium recipe (Table 2), and compare this to descriptions of “typical human urine” (Putnam et al., 1971; Bouatra et al., 2013). Examples of supplements to previously used SHU formulations include Lysogeny Broth (LB), Todd-Hewitt Broth (THB), and dextrose for fungi such as Candida sp. (Table 2). The proposed composite SHU medium omits chemically undefined components such as LB to provide chemical definition, is easily prepared, inexpensive, and chemically stable. However, it is also not without its limitations; it excludes some natural constituents of human urine such as hormones, iron chelators, and pyrophosphates that could influence microbial growth. The relative concentrations of some urinary constituents differ between males and females (e.g., less calcium and oxalate, more citrate excretion in women, more creatinine in men; Ryall et al., 1987; Sarada and Satyanarayana, 1991; Bouatra et al., 2013) and the proposed composite SHU does not account for these differences. Nonetheless, as a balance between feasibility, logistics, and economy the proposed composite SHU medium should be of value to standardize future bacteriuria studies; importantly, studies will now need to validate the proposed composite SHU medium using a range of relevant bacteria, and in particular, analyze the need for supplements (e.g., yeast extract) to support the growth of fastidious organisms such as streptococci.

Conclusions and future directions

A capacity of microorganisms for urine growth may aid in establishing long-term bacteriuria and is relevant to many microbial species. New discoveries on immune activation by ABU show this form of infection does not exist entirely under the radar of immune surveillance. Continued use of SHU for in vitro studies will drive new discoveries on how bacteriuria progresses and how this may influence subsequent infection. Future work needs to address multiple areas; including (1) validation of the proposed composite SHU medium using a range of relevant bacteria; (2) defining differences in “significant” bacteriuria for different organisms and the implications of bacteruric potential toward such definitions; (3) lifestyle adaptations, other than those described for D-serine, guanine, malic acid, and iron acquisition that aid microbial bacteruric potential; (4) the molecular basis of urine growth in non-E. coli organisms; how ABU interfaces with host immune mechanisms for different organisms (and among distinct patient populations); (5) differences in male vs. female urine composition, in particular hormones (and whether this influences bacterial growth); and (6) how ABU impacts on subsequent UTI including comparisons of immune responses to ABU caused by organisms other than E. coli. How effective ABU might be as a prophylactic approach against sUTI continues to be a topic for future investigation. More importantly, studies aimed at defining bacterial mechanisms that are critical for growth in urine are essential in the context of providing a foundation for novel treatment and preventive strategies.

Author contributions

DI, EH, and GU conceived of the study, analyzed the literature, and wrote the manuscript.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

This work was supported by an Australian National Health and Medical Research Council (NHMRC) grant (APP1084889) (GU), and a Griffith University New Researcher Grant (219152) (DI). GU is supported by a Future Fellowship from the Australian Research Council (FT110101048).

References

  1. Alteri C. J., Mobley H. L. (2007). Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect. Immun. 75, 2679–2688. 10.1128/IAI.00076-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alteri C. J., Smith S. N., Mobley H. L. (2009). Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 5:e1000448. 10.1371/journal.ppat.1000448 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersson P., Engberg I., Lidin-Janson G., Lincoln K., Hull R., Hull S., et al. (1991). Persistence of Escherichia coli bacteriuria is not determined by bacterial adherence. Infect. Immun. 59, 2915–2921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ariathianto Y. (2011). Asymptomatic bacteriuria - prevalence in the elderly population. Aust. Fam. Physician 40, 805–809. [PubMed] [Google Scholar]
  5. Arthur M., Johnson C. E., Rubin R. H., Arbeit R. D., Campanelli C., Kim C., et al. (1989). Molecular epidemiology of adhesin and hemolysin virulence factors among uropathogenic Escherichia coli. Infect. Immun. 57, 303–313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aubron C., Glodt J., Matar C., Huet O., Borderie D., Dobrindt U., et al. (2012). Variation in endogenous oxidative stress in Escherichia coli natural isolates during growth in urine. BMC Microbiol. 12:120. 10.1186/1471-2180-12-120 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Aurora A. L., Rao A. S., Srimathi V. (1980). Effects of constituents of artificial urine on spontaneous precipitation of calcium oxalate monohydrate (whewellite). Ind. J. Med. Res. 72, 273–283. [PubMed] [Google Scholar]
  8. Azevedo A. S., Almeida C., Melo L. F., Azevedo N. F. (2014). Interaction between atypical microorganisms and E. coli in catheter-associated urinary tract biofilms. Biofouling 30, 893–902. 10.1080/08927014.2014.944173 [DOI] [PubMed] [Google Scholar]
  9. Barker L. M., Pallante S. L., Eisenberg H., Joule J. A., Becker G. L., Howard J. E. (1974). Simple synthetic and natural urines have equivalent anticalcifying properties. Invest. Urol. 12, 79–81. [PubMed] [Google Scholar]
  10. Barr D. B., Wilder L. C., Caudill S. P., Gonzalez A. J., Needham L. L., Pirkle J. L. (2005). Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ. Health Perspect. 113, 192–200. 10.1289/ehp.7337 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Barron A., May G., Bremer E., Villarejo M. (1986). Regulation of envelope protein composition during adaptation to osmotic stress in Escherichia coli. J. Bacteriol. 167, 433–438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bates J. M., Raffi H. M., Prasadan K., Mascarenhas R., Laszik Z., Maeda N., et al. (2004). Tamm-Horsfall protein knockout mice are more prone to urinary tract infection: rapid communication. Kidney Int. 65, 791–797. 10.1111/j.1523-1755.2004.00452.x [DOI] [PubMed] [Google Scholar]
  13. Berger A., Dohnt K., Tielen P., Jahn D., Becker J., Wittmann C. (2014). Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS ONE 9:e88368. 10.1371/journal.pone.0088368 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bouatra S., Aziat F., Mandal R., Guo A. C., Wilson M. R., Knox C., et al. (2013). The human urine metabolome. PLoS ONE 8:e73076. 10.1371/journal.pone.0073076 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Brooks T., Keevil C. W. (1997). A simple artificial urine for the growth of urinary pathogens. Lett. Appl. Microbiol. 24, 203–206. 10.1046/j.1472-765X.1997.00378.x [DOI] [PubMed] [Google Scholar]
  16. Brown P., Ackermann D., Finlayson B. (1989). Calcium-Oxalate Dihydrate (Weddellite) Precipitation. J. Cryst. Growth 98, 285–292. 10.1016/0022-0248(89)90143-7 [DOI] [Google Scholar]
  17. Burns J. R., Finlayson B. (1980). A proposal for a standard reference artificial urine in in vitro urolithiasis experiments. Invest. Urol. 18, 167–169. [PubMed] [Google Scholar]
  18. Carey A. J., Sullivan M. J., Duell B. L., Crossman D. K., Chattopadhyay D., Brooks A. J., et al. (2016). Uropathogenic Escherichia coli engages CD14-dependent signaling to enable bladder-macrophage-dependent control of acute urinary tract infection. J. Infect. Dis. 213, 659–668. 10.1093/infdis/jiv424 [DOI] [PubMed] [Google Scholar]
  19. Carlsson S., Wiklund N. P., Engstrand L., Weitzberg E., Lundberg J. O. (2001). Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric Oxide 5, 580–586. 10.1006/niox.2001.0371 [DOI] [PubMed] [Google Scholar]
  20. Chambers S. T., Lever M. (1996). Betaines and urinary tract infections. Nephron 74, 1–10. 10.1159/000189274 [DOI] [PubMed] [Google Scholar]
  21. Chaturvedi K. S., Hung C. S., Crowley J. R., Stapleton A. E., Henderson J. P. (2012). The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat. Chem. Biol. 8, 731–736. 10.1038/nchembio.1020 [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Christmas K. G., Gower L. B., Khan S. R., El-Shall H. (2002). Aggregation and dispersion characteristics of calcium oxalate monohydrate: effect of urinary species. J. Colloid Interface Sci. 256, 168–174. 10.1006/jcis.2002.8283 [DOI] [PubMed] [Google Scholar]
  23. Chromek M., Slamová Z., Bergman P., Kovács L., Podracká L., Ehrén I., et al. (2006). The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12, 636–641. 10.1038/nm1407 [DOI] [PubMed] [Google Scholar]
  24. Chutipongtanate S., Thongboonkerd V. (2010). Systematic comparisons of artificial urine formulas for in vitro cellular study. Anal. Biochem. 402, 110–112. 10.1016/j.ab.2010.03.031 [DOI] [PubMed] [Google Scholar]
  25. Clarke M., Pead L., Maskell R. (1985). Urinary infection in adult men: a laboratory perspective. Br. J. Urol. 57, 222–226. 10.1111/j.1464-410X.1985.tb06429.x [DOI] [PubMed] [Google Scholar]
  26. Cosloy S. D., McFall E. (1973). Metabolism of D-serine in Escherichia coli K-12: mechanism of growth inhibition. J. Bacteriol. 114, 685–694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dalal S., Nicolle L., Marrs C. F., Zhang L., Harding G., Foxman B. (2009). Long-term Escherichia coli asymptomatic bacteriuria among women with diabetes mellitus. Clin. Infect. Dis. 49, 491–497. 10.1086/600883 [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Dalhoff A., Stubbings W., Schubert S. (2011). Comparative in vitro activities of the novel antibacterial finafloxacin against selected Gram-positive and Gram-negative bacteria tested in Mueller-Hinton broth and synthetic urine. Antimicrob. Agents Chemother. 55, 1814–1818. 10.1128/AAC.00886-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Darouiche R. O., Mansouri M. D., Gawande P. V., Madhyastha S. (2008). Efficacy of combination of chlorhexidine and protamine sulphate against device-associated pathogens. J. Antimicrob. Chemother. 61, 651–657. 10.1093/jac/dkn006 [DOI] [PubMed] [Google Scholar]
  30. Davis C. P., Arnett D., Warren M. M. (1982). Iontophoretic killing of Escherichia coli in static fluid and in a model catheter system. J. Clin. Microbiol. 15, 891–894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Davis C. P., Wagle N., Anderson M. D., Warren M. M. (1991). Bacterial and fungal killing by iontophoresis with long-lived electrodes. Antimicrob. Agents Chemother. 35, 2131–2134. 10.1128/AAC.35.10.2131 [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Davis C. P., Weinberg S., Anderson M. D., Rao G. M., Warren M. M. (1989). Effects of microamperage, medium, and bacterial concentration on iontophoretic killing of bacteria in fluid. Antimicrob. Agents Chemother. 33, 442–447. 10.1128/AAC.33.4.442 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Decramer S., Gonzalez de Peredo A., Breuil B., Mischak H., Monsarrat B., Bascands J. L., et al. (2008). Urine in clinical proteomics. Mol. Cell. Proteomics 7, 1850–1862. 10.1074/mcp.R800001-MCP200 [DOI] [PubMed] [Google Scholar]
  34. Deutch C. E., Arballo M. E., Cooks L. N., Gomes J. M., Williams T. M., Aboul-Fadl T., et al. (2006). Susceptibility of Escherichia coli to L-selenaproline and other L-proline analogues in laboratory culture media and normal human urine. Lett. Appl. Microbiol. 43, 392–398. 10.1111/j.1472-765X.2006.01979.x [DOI] [PubMed] [Google Scholar]
  35. Dinnbier U., Limpinsel E., Schmid R., Bakker E. P. (1988). Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150, 348–357. 10.1007/BF00408306 [DOI] [PubMed] [Google Scholar]
  36. Domergue R., Castaño I., De Las Peñas A., Zupancic M., Lockatell V., Hebel J. R., et al. (2005). Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308, 866–870. 10.1126/science.1108640 [DOI] [PubMed] [Google Scholar]
  37. Doremus R. H., Teich S., Silvis P. X. (1978). Crystallization of calcium oxalate from synthetic urine. Invest. Urol. 15, 469–472. [PubMed] [Google Scholar]
  38. Duell B. L., Carey A. J., Tan C. K., Cui X., Webb R. I., Totsika M., et al. (2012). Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection. J. Immunol. 188, 781–792. 10.4049/jimmunol.1101231 [DOI] [PubMed] [Google Scholar]
  39. Fischer H., Lutay N., Ragnarsdóttir B., Yadav M., Jönsson K., Urbano A., et al. (2010). Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog. 6:e1001109. 10.1371/journal.ppat.1001109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Frendéus B., Wachtler C., Hedlund M., Fischer H., Samuelsson P., Svensson M., et al. (2001). Escherichia coli P fimbriae utilize the Toll-like receptor 4 pathway for cell activation. Mol. Microbiol. 40, 37–51. 10.1046/j.1365-2958.2001.02361.x [DOI] [PubMed] [Google Scholar]
  41. Garcia E. C., Brumbaugh A. R., Mobley H. L. (2011). Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect. Immun. 79, 1225–1235. 10.1128/IAI.01222-10 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Gardner G. L., Doremus R. H. (1978). Crystal growth inhibitors in human urine. Effect on calcium oxalate kinetics. Invest. Urol. 15, 478–485. [PubMed] [Google Scholar]
  43. Gonzalez-Chavez S. A., Arevalo-Gallegos S., Rascon-Cruz Q. (2009). Lactoferrin: structure, function and applications. Int. J. Antimicrob. Agents 33, 301, e301–e308. 10.1016/j.ijantimicag.2008.07.020 [DOI] [PubMed] [Google Scholar]
  44. Gordon D. M., Riley M. A. (1992). A theoretical and experimental analysis of bacterial growth in the bladder. Mol. Microbiol. 6, 555–562. 10.1111/j.1365-2958.1992.tb01500.x [DOI] [PubMed] [Google Scholar]
  45. Grases F., Llobera A. (1998). Experimental model to study sedimentary kidney stones. Micron 29, 105–111. 10.1016/S0968-4328(98)00006-7 [DOI] [PubMed] [Google Scholar]
  46. Greene S. E., Hibbing M. E., Janetka J., Chen S. L., Hultgren S. J. (2015). Human urine decreases function and expression of Type 1 pili in uropathogenic Escherichia coli. MBio 6:e00820. 10.1128/mBio.00820-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Griffith D. P., Musher D. M., Itin C. (1976). Urease. The primary cause of infection-induced urinary stones. Invest. Urol. 13, 346–350. [PubMed] [Google Scholar]
  48. Grönberg-Hernández J., Sundén F., Connolly J., Svanborg C., Wullt B. (2011). Genetic control of the variable innate immune response to asymptomatic bacteriuria. PLoS ONE 6:e28289. 10.1371/journal.pone.0028289 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Guo K., Li L. (2009). Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal. Chem. 81, 3919–3932. 10.1021/ac900166a [DOI] [PubMed] [Google Scholar]
  50. Gutierrez C., Ardourel M., Bremer E., Middendorf A., Boos W., Ehmann U. (1989). Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coli K12. Mol. Gen. Genet. 217, 347–354. 10.1007/BF02464903 [DOI] [PubMed] [Google Scholar]
  51. Hagan E. C., Mobley H. L. (2009). Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol. Microbiol. 71, 79–91. 10.1111/j.1365-2958.2008.06509.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Hand W. L., Smith J. W., Sanford J. P. (1971). The antibacterial effect of normal and infected urinary bladder. J. Lab. Clin. Med. 77, 605–615. [PubMed] [Google Scholar]
  53. Hannan T. J., Mysorekar I. U., Hung C. S., Isaacson-Schmid M. L., Hultgren S. J. (2010). Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog. 6:e1001042. 10.1371/journal.ppat.1001042 [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Hannan T. J., Totsika M., Mansfield K. J., Moore K. H., Schembri M. A., Hultgren S. J. (2012). Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol. Rev. 36, 616–648. 10.1111/j.1574-6976.2012.00339.x [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Håversen L. A., Engberg I., Baltzer L., Dolphin G., Hanson L. A., Mattsby-Baltzer I. (2000). Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect. Immun. 68, 5816–5823. 10.1128/IAI.68.10.5816-5823.2000 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Hood M. I., Skaar E. P. (2012). Nutritional immunity: transition metals at the pathogen-host interface. Nat. Rev. Microbiol. 10, 525–537. 10.1038/nrmicro2836 [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Hooton T. M., Scholes D., Stapleton A. E., Roberts P. L., Winter C., Gupta K., et al. (2000). A prospective study of asymptomatic bacteriuria in sexually active young women. N. Engl. J. Med. 343, 992–997. 10.1056/NEJM200010053431402 [DOI] [PubMed] [Google Scholar]
  58. Hryckowian A. J., Baisa G. A., Schwartz K. J., Welch R. A. (2015). dsdA does not affect colonization of the murine urinary tract by Escherichia coli CFT073. PLoS ONE 10:e0138121 10.1371/journal.pone.0138121 [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Huang Y., Nishikawa T., Satoh K., Iwata T., Fukushima T., Santa T., et al. (1998). Urinary excretion of D-serine in human: comparison of different ages and species. Biol. Pharm. Bull. 21, 156–162. 10.1248/bpb.21.156 [DOI] [PubMed] [Google Scholar]
  60. Hull R., Rudy D., Donovan W., Svanborg C., Wieser I., Stewart C., et al. (2000). Urinary tract infection prophylaxis using Escherichia coli 83972 in spinal cord injured patients. J. Urol. 163, 872–877. 10.1016/S0022-5347(05)67823-8 [DOI] [PubMed] [Google Scholar]
  61. Ipe D. S., Ben Zakour N. L., Sullivan M. J., Beatson S. A., Ulett K. B., Benjamin W. H., et al. (2016). Discovery and characterization of human urine utilization by asymptomatic bacteriuria streptococcus agalactiae. Infect. Immun. 84, 307–319. 10.1128/IAI.00938-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Ipe D. S., Sundac L., Benjamin W. H., Jr., Moore K. H., Ulett G. C. (2013). Asymptomatic bacteriuria: prevalence rates of causal microorganisms, etiology of infection in different patient populations, and recent advances in molecular detection. FEMS Microbiol. Lett. 346, 1–10. 10.1111/1574-6968.12204 [DOI] [PubMed] [Google Scholar]
  63. Isaacson L. C. (1969). Urinary composition in calcific nephrolithiasis. Invest. Urol. 6, 356–363. [PubMed] [Google Scholar]
  64. Jain N., Kohli R., Cook E., Gialanella P., Chang T., Fries B. C. (2007). Biofilm formation by and antifungal susceptibility of Candida isolates from urine. Appl. Environ. Microbiol. 73, 1697–1703. 10.1128/AEM.02439-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Järvisalo J., Olkinuora M., Kiilunen M., Kivistö H., Ristola P., Tossavainen A., et al. (1992). Urinary and blood manganese in occupationally nonexposed populations and in manual metal arc welders of mild steel. Int. Arch. Occup. Environ. Health 63, 495–501. 10.1007/BF00572116 [DOI] [PubMed] [Google Scholar]
  66. Johnson J. R., Clabots C., Rosen H. (2006). Effect of inactivation of the global oxidative stress regulator oxyR on the colonization ability of Escherichia coli O1:K1:H7 in a mouse model of ascending urinary tract infection. Infect. Immun. 74, 461–468. 10.1128/IAI.74.1.461-468.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. King J. E., Aal Owaif H. A., Jia J., Roberts I. S. (2015). Phenotypic heterogeneity in expression of the K1 polysaccharide capsule of uropathogenic Escherichia coli and downregulation of the capsule genes during growth in urine. Infect. Immun. 83, 2605–2613. 10.1128/IAI.00188-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Klemm P., Hancock V., Schembri M. A. (2007). Mellowing out: adaptation to commensalism by Escherichia coli asymptomatic bacteriuria strain 83972. Infect. Immun. 75, 3688–3695. 10.1128/IAI.01730-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Klemm P., Roos V., Ulett G. C., Svanborg C., Schembri M. A. (2006). Molecular characterization of the Escherichia coli asymptomatic bacteriuria strain 83972: the taming of a pathogen. Infect. Immun. 74, 781–785. 10.1128/IAI.74.1.781-785.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kline K. A., Schwartz D. J., Gilbert N. M., Hultgren S. J., Lewis A. L. (2012). Immune modulation by group B Streptococcus influences host susceptibility to urinary tract infection by uropathogenic Escherichia coli. Infect. Immun. 80, 4186–4194. 10.1128/IAI.00684-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Kucheria R., Dasgupta P., Sacks S. H., Khan M. S., Sheerin N. S. (2005). Urinary tract infections: new insights into a common problem. Postgrad. Med. J. 81, 83–86. 10.1136/pgmj.2004.023036 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Kunin C. M., Hua T. H., Bakaletz L. O. (1995). Effect of salicylate on expression of flagella by Escherichia coli and Proteus, Providencia, and Pseudomonas spp. Infect. Immun. 63, 1796–1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Kunin C. M., Hua T. H., Guerrant R. L., Bakaletz L. O. (1994). Effect of salicylate, bismuth, osmolytes, and tetracycline resistance on expression of fimbriae by Escherichia coli. Infect. Immun. 62, 2178–2186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Kunin C. M., Hua T. H., Van Arsdale White L., Villarejo M. (1992). Growth of Escherichia coli in human urine: role of salt tolerance and accumulation of glycine betaine. J. Infect. Dis. 166, 1311–1315. 10.1093/infdis/166.6.1311 [DOI] [PubMed] [Google Scholar]
  75. Laimins L. A., Rhoads D. B., Altendorf K., Epstein W. (1978). Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 75, 3216–3219. 10.1073/pnas.75.7.3216 [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Landete J. M., García-Haro L., Blasco A., Manzanares P., Berbegal C., Monedero V., et al. (2010). Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Appl. Environ. Microbiol. 76, 84–95. 10.1128/AEM.02145-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. La Rosa S. L., Diep D. B., Nes I. F., Brede D. A. (2012). Construction and application of a luxABCDE reporter system for real-time monitoring of Enterococcus faecalis gene expression and growth. Appl. Environ. Microbiol. 78, 7003–7011. 10.1128/AEM.02018-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Lee S. C., Hutchinson J. M., Inn K. G., Thein M. (1995). An intercomparison study of 237Np determination in artificial urine samples. Health Phys. 68, 350–358. 10.1097/00004032-199503000-00007 [DOI] [PubMed] [Google Scholar]
  79. Lehman S. M., Donlan R. M. (2015). Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob. Agents Chemother. 59, 1127–1137. 10.1128/AAC.03786-14 [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Leonhardt K. O., Landes R. R. (1963). Oxygen tension of the urine and renal structures. Preliminary report of clinical findings. N. Engl. J. Med. 269, 115–121. 10.1056/NEJM196307182690301 [DOI] [PubMed] [Google Scholar]
  81. Lomberg H., Hanson L. A., Jacobsson B., Jodal U., Leffler H., Edén C. S. (1983). Correlation of P blood group, vesicoureteral reflux, and bacterial attachment in patients with recurrent pyelonephritis. N. Engl. J. Med. 308, 1189–1192. 10.1056/NEJM198305193082003 [DOI] [PubMed] [Google Scholar]
  82. Low Y. L., Jakubovics N. S., Flatman J. C., Jenkinson H. F., Smith A. W. (2003). Manganese-dependent regulation of the endocarditis-associated virulence factor EfaA of Enterococcus faecalis. J. Med. Microbiol. 52, 113–119. 10.1099/jmm.0.05039-0 [DOI] [PubMed] [Google Scholar]
  83. Mabbett A. N., Ulett G. C., Watts R. E., Tree J. J., Totsika M., Ong C. L., et al. (2009). Virulence properties of asymptomatic bacteriuria Escherichia coli. Int. J. Med. Microbiol. 299, 53–63. 10.1016/j.ijmm.2008.06.003 [DOI] [PubMed] [Google Scholar]
  84. Mansouri M. D., Darouiche R. O. (2008). In-vitro activity and in-vivo efficacy of catheters impregnated with chloroxylenol and thymol against uropathogens. Clin. Microbiol. Infect. 14, 190–192. 10.1111/j.1469-0691.2007.01894.x [DOI] [PubMed] [Google Scholar]
  85. Martino P. D., Fursy R., Bret L., Sundararaju B., Phillips R. S. (2003). Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can. J. Microbiol. 49, 443–449. 10.1139/w03-056 [DOI] [PubMed] [Google Scholar]
  86. Mayrovitz H. N., Sims N. (2001). Biophysical effects of water and synthetic urine on skin. Adv. Skin Wound Care 14, 302–308. 10.1097/00129334-200111000-00013 [DOI] [PubMed] [Google Scholar]
  87. Meury J., Robin A., Monnier-Champeix P. (1985). Turgor-controlled K+ fluxes and their pathways in Escherichia coli. Eur. J. Biochem. 151, 613–619. 10.1111/j.1432-1033.1985.tb09148.x [DOI] [PubMed] [Google Scholar]
  88. Miller J. D., Randolph A. D., Drach G. W. (1977). Observations upon calcium oxalate crystallization kinetics in simulated urine. J. Urol. 117, 342–345. [DOI] [PubMed] [Google Scholar]
  89. Minuth J. N., Musher D. M., Thorsteinsson S. B. (1976). Inhibition of the antibacterial activity of gentamicin by urine. J. Infect. Dis. 133, 14–21. 10.1093/infdis/133.1.14 [DOI] [PubMed] [Google Scholar]
  90. Negri M., Silva S., Breda D., Henriques M., Azeredo J., Oliveira R. (2012). Candida tropicalis biofilms: effect on urinary epithelial cells. Microb. Pathog. 53, 95–99. 10.1016/j.micpath.2012.05.006 [DOI] [PubMed] [Google Scholar]
  91. Negri M., Silva S., Capoci I. R., Azeredo J., Henriques M. (2015). Candida tropicalis biofilms: biomass, metabolic activity and secreted aspartyl proteinase production. Mycopathologia. 10.1007/s11046-015-9964-4. [Epub ahead of print]. [DOI] [PubMed] [Google Scholar]
  92. Negri M., Silva S., Henriques M., Azeredo J., Svidzinski T., Oliveira R. (2011). Candida tropicalis biofilms: artificial urine, urinary catheters and flow model. Medical Mycology 49, 739–747. 10.3109/13693786.2011.560619 [DOI] [PubMed] [Google Scholar]
  93. Nickel J. C., Ruseska I., Wright J. B., Costerton J. W. (1985). Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother. 27, 619–624. 10.1128/AAC.27.4.619 [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Nicolle L. E. (1997). Asymptomatic bacteriuria in the elderly. Infect. Dis. Clin. North Am. 11, 647–662. 10.1016/S0891-5520(05)70378-0 [DOI] [PubMed] [Google Scholar]
  95. Nicolle L. E. (1999). Urinary infections in the elderly: symptomatic of asymptomatic? Int. J. Antimicrob. Agents 11, 265–268. [DOI] [PubMed] [Google Scholar]
  96. Nicolle L. E. (2014). Asymptomatic bacteriuria. Curr. Opin. Infect. Dis. 27, 90–96. 10.1097/QCO.0000000000000019 [DOI] [PubMed] [Google Scholar]
  97. Nicolle L. E., Bradley S., Colgan R., Rice J. C., Schaeffer A., Hooton T. M. (2005). Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin. Infect. Dis. 40, 643–654. 10.1086/427507 [DOI] [PubMed] [Google Scholar]
  98. Nielubowicz G. R., Mobley H. L. (2010). Host-pathogen interactions in urinary tract infection. Nat. Rev. Urol. 7, 430–441. 10.1038/nrurol.2010.101 [DOI] [PubMed] [Google Scholar]
  99. O'grady F., Cattell W. R. (1966a). Kinetics of urinary tract infection. I. Upper urinary tract. Br. J. Urol. 38, 149–155. [DOI] [PubMed] [Google Scholar]
  100. O'grady F., Cattell W. R. (1966b). Kinetics of urinary tract infection. II. The bladder. Br. J. Urol. 38, 156–162. [DOI] [PubMed] [Google Scholar]
  101. O'grady F., Pennington J. H. (1966). Bacterial growth in an in vitro system simulating conditions in the urinary bladder. Br. J. Exp. Pathol. 47, 152–157. [PMC free article] [PubMed] [Google Scholar]
  102. Ong C. L., Beatson S. A., McEwan A. G., Schembri M. A. (2009). Conjugative plasmid transfer and adhesion dynamics in an Escherichia coli biofilm. Appl. Environ. Microbiol. 75, 6783–6791. 10.1128/AEM.00974-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Ong C. L., Beatson S. A., Totsika M., Forestier C., McEwan A. G., Schembri M. A. (2010). Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol. 10:183. 10.1186/1471-2180-10-183 [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Opalko F. J., Adair J. H., Khan S. R. (1997). Heterogeneous nucleation of calcium oxalate trihydrate in artificial urine by constant composition. J. Cryst. Growth 181, 410–417. 10.1016/S0022-0248(97)00222-4 [DOI] [Google Scholar]
  105. Pätzold R., Schieber A., Brückner H. (2005). Gas chromatographic quantification of free D-amino acids in higher vertebrates. Biomed. Chromatogr. 19, 466–473. 10.1002/bmc.515 [DOI] [PubMed] [Google Scholar]
  106. Phuengkham H., Nasongkla N. (2015). Development of antibacterial coating on silicone surface via chlorhexidine-loaded nanospheres. J. Mater. Sci. Mater. Med. 26:78. 10.1007/s10856-015-5418-2 [DOI] [PubMed] [Google Scholar]
  107. Putnam D. F., Company-West M. D. A., Center L. R., Aeronautics U. S. N., Administration S. (1971). Composition and Concentrative Properties of Human Urine. Washington, DC: National Aeronautics and Space Administration. [Google Scholar]
  108. Raffi H. S., Bates J. M., Jr., Laszik Z., Kumar S. (2005). Tamm-Horsfall protein acts as a general host-defense factor against bacterial cystitis. Am. J. Nephrol. 25, 570–578. 10.1159/000088990 [DOI] [PubMed] [Google Scholar]
  109. Ragnarsdóttir B., Svanborg C. (2012). Susceptibility to acute pyelonephritis or asymptomatic bacteriuria: host-pathogen interaction in urinary tract infections. Pediatric Nephrol. 27, 2017–2029. 10.1007/s00467-011-2089-1 [DOI] [PubMed] [Google Scholar]
  110. Rane H. S., Bernardo S. M., Howell A. B., Lee S. A. (2014). Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence-specific mechanisms. J. Antimicrob. Chemother. 69, 428–436. 10.1093/jac/dkt398 [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Robertson W. G., Peacock M., Nordin B. E. (1968). Activity products in stone-forming and non-stone-forming urine. Clin. Sci. 34, 579–594. [PubMed] [Google Scholar]
  112. Robertson W. G., Scurr D. S. (1986). Modifiers of calcium oxalate crystallization found in urine. I. Studies with a continuous crystallizer using an artificial urine. J. Urol. 135, 1322–1326. [DOI] [PubMed] [Google Scholar]
  113. Robertson W. G., Scurr D. S., Bridge C. M. (1981). Factors influencing the crystallization of calcium-oxalate in urine - critique. J. Cryst. Growth 53, 182–194. 10.1016/0022-0248(81)90064-6 [DOI] [Google Scholar]
  114. Robinson A. V., Fisher D. R., Hadley R. T. (1984). Technical Evaluation of Draft ANSI Standard N13.30, Performance Criteria for Radioassay. Richland, WA: Pacific Northwest Laboratory. [Google Scholar]
  115. Rodgers A. L., Wandt M. A. (1991). Influence of ageing, pH and various additives on crystal formation in artificial urine. Scanning Microsc. 5, 697–705. discussion: 705–696. [PubMed] [Google Scholar]
  116. Roesch P. L., Redford P., Batchelet S., Moritz R. L., Pellett S., Haugen B. J., et al. (2003). Uropathogenic Escherichia coli use D-serine deaminase to modulate infection of the murine urinary tract. Mol. Microbiol. 49, 54–67. 10.1046/j.1365-2958.2003.03543.x [DOI] [PubMed] [Google Scholar]
  117. Ronald A., Ludwig E. (2001). Urinary tract infections in adults with diabetes. Int. J. Antimicrob. Agents 17, 287–292. 10.1016/S0924-8579(00)00356-3 [DOI] [PubMed] [Google Scholar]
  118. Roos V., Nielsen E. M., Klemm P. (2006a). Asymptomatic bacteriuria Escherichia coli strains: adhesins, growth and competition. FEMS Microbiol. Lett. 262, 22–30. 10.1111/j.1574-6968.2006.00355.x [DOI] [PubMed] [Google Scholar]
  119. Roos V., Ulett G. C., Schembri M. A., Klemm P. (2006b). The asymptomatic bacteriuria Escherichia coli strain 83972 outcompetes uropathogenic E. coli strains in human urine. Infect. Immun. 74, 615–624. 10.1128/IAI.74.1.615-624.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Rose M. B. (1975). Renal stone formation. The inhibitory effect of urine on calcium oxalate precipitation. Invest. Urol. 12, 428–433. [PubMed] [Google Scholar]
  121. Rubin R. H., Shapiro E. D., Andriole V. T., Davis R. J., Stamm W. E. (1992). Evaluation of new anti-infective drugs for the treatment of urinary tract infection. Infectious Diseases Society of America and the Food and Drug Administration. Clin. Infect. Dis. 15(Suppl. 1), S216–S227. 10.1093/clind/15.supplement_1.s216 [DOI] [PubMed] [Google Scholar]
  122. Rudick C. N., Billips B. K., Pavlov V. I., Yaggie R. E., Schaeffer A. J., Klumpp D. J. (2010). Host-pathogen interactions mediating pain of urinary tract infection. J. Infect. Dis. 201, 1240–1249. 10.1086/651275 [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Russo T. A., Jodush S. T., Brown J. J., Johnson J. R. (1996). Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol. Microbiol. 22, 217–229. 10.1046/j.1365-2958.1996.00096.x [DOI] [PubMed] [Google Scholar]
  124. Russo T. A., Olson R., Macdonald U., Beanan J., Davidson B. A. (2015). Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect. Immun. 83, 3325–3333. 10.1128/IAI.00430-15 [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Ryall R. L., Harnett R. M., Hibberd C. M., Mazzachi B. C., Mazzachi R. D., Marshall V. R. (1987). Urinary risk factors in calcium oxalate stone disease: comparison of men and women. Br. J. Urol. 60, 480–488. 10.1111/j.1464-410X.1987.tb05025.x [DOI] [PubMed] [Google Scholar]
  126. Säemann M. D., Weichhart T., Hörl W. H., Zlabinger G. J. (2005). Tamm-Horsfall protein: a multilayered defence molecule against urinary tract infection. Eur. J. Clin. Invest. 35, 227–235. 10.1111/j.1365-2362.2005.01483.x [DOI] [PubMed] [Google Scholar]
  127. Sakinç T., Michalski N., Kleine B., Gatermann S. G. (2009). The uropathogenic species Staphylococcus saprophyticus tolerates a high concentration of D-serine. FEMS Microbiol. Lett. 299, 60–64. 10.1111/j.1574-6968.2009.01731.x [DOI] [PubMed] [Google Scholar]
  128. Sako S., Kariyama R., Mitsuhata R., Yamamoto M., Wada K., Ishii A., et al. (2014). Molecular epidemiology and clinical implications of metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from urine. Acta Med. Okayama 68, 89–99. [DOI] [PubMed] [Google Scholar]
  129. Salvador E., Wagenlehner F., Kohler C. D., Mellmann A., Hacker J., Svanborg C., et al. (2012). Comparison of asymptomatic bacteriuria Escherichia coli isolates from healthy individuals versus those from hospital patients shows that long-term bladder colonization selects for attenuated virulence phenotypes. Infect. Immun. 80, 668–678. 10.1128/IAI.06191-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Samaranayake Y. H., Bandara H. M., Cheung B. P., Yau J. Y., Yeung S. K., Samaranayake L. P. (2014). Enteric Gram-negative bacilli suppress Candida biofilms on Foley urinary catheters. APMIS 122, 47–58. 10.1111/apm.12098 [DOI] [PubMed] [Google Scholar]
  131. Sarada B., Satyanarayana U. (1991). Urinary composition in men and women and the risk of urolithiasis. Clin. Biochem. 24, 487–490. 10.1016/S0009-9120(05)80007-4 [DOI] [PubMed] [Google Scholar]
  132. Schneeberger C., Geerlings S. E., Middleton P., Crowther C. A. (2012). Interventions for preventing recurrent urinary tract infection during pregnancy. Cochrane Database Syst. Rev. 11:CD009279. 10.1002/14651858.CD009279.pub2 [DOI] [PubMed] [Google Scholar]
  133. Schneeberger C., Kazemier B. M., Geerlings S. E. (2014). Asymptomatic bacteriuria and urinary tract infections in special patient groups: women with diabetes mellitus and pregnant women. Curr. Opin. Infect. Dis. 27, 108–114. 10.1097/QCO.0000000000000028 [DOI] [PubMed] [Google Scholar]
  134. Shaykhutdinov R. A., Macinnis G. D., Dowlatabadi R., Weljie A. M., Vogel H. J. (2009). Quantitative analysis of metabolite concentrations in human urine samples using 13C{1H} NMR spectroscopy. Metabolomics 5, 307–317. 10.1007/s11306-009-0155-5 [DOI] [Google Scholar]
  135. Sheewin N. S. (2011). Urinary tract infection. Medicine 39, 384–389. 10.1016/j.mpmed.2011.04.00325986163 [DOI] [Google Scholar]
  136. Shepard B. D., Gilmore M. S. (2002). Differential expression of virulence-related genes in Enterococcus faecalis in response to biological cues in serum and urine. Infect. Immun. 70, 4344–4352. 10.1128/IAI.70.8.4344-4352.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Shields-Cutler R. R., Crowley J. R., Hung C. S., Stapleton A. E., Aldrich C. C., Marschall J., et al. (2015). Human urinary composition controls antibacterial activity of siderocalin. J. Biol. Chem. 290, 15949–15960. 10.1074/jbc.M115.645812 [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Silva S., Negri M., Henriques M., Oliveira R., Williams D., Azeredo J. (2010). Silicone colonization by non-Candida albicans Candida species in the presence of urine. J. Med. Microbiol. 59, 747–754. 10.1099/jmm.0.017517-0 [DOI] [PubMed] [Google Scholar]
  139. Snyder J. A., Haugen B. J., Buckles E. L., Lockatell C. V., Johnson D. E., Donnenberg M. S., et al. (2004). Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72, 6373–6381. 10.1128/IAI.72.11.6373-6381.2004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Sobel J. D. (1985). New aspects of pathogenesis of lower urinary tract infections. Urology 26, 11–16. [PubMed] [Google Scholar]
  141. Soler-García A. A., Johnson D., Hathout Y., Ray P. E. (2009). Iron-related proteins: candidate urine biomarkers in childhood HIV-associated renal diseases. Clin. J. Am. Soc. Nephrol. 4, 763–771. 10.2215/CJN.0200608 [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Stamey T. A., Mihara G. (1980). Observations on the growth of urethral and vaginal bacteria in sterile urine. J. Urol. 124, 461–463. [DOI] [PubMed] [Google Scholar]
  143. Storer M. K., Hibbard-Melles K., Davis B., Scotter J. (2011). Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS). J. Microbiol. Methods 87, 111–113. 10.1016/j.mimet.2011.06.012 [DOI] [PubMed] [Google Scholar]
  144. Strøm A. R., Kaasen I. (1993). Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol. Microbiol. 8, 205–210. 10.1111/j.1365-2958.1993.tb01564.x [DOI] [PubMed] [Google Scholar]
  145. Styrvold O. B., Strøm A. R. (1991). Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains: influence of amber suppressors and function of the periplasmic trehalase. J. Bacteriol. 173, 1187–1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Sundén F., Håkansson L., Ljunggren E., Wullt B. (2006). Bacterial interference–is deliberate colonization with Escherichia coli 83972 an alternative treatment for patients with recurrent urinary tract infection? Int. J. Antimicrob. Agents 28(Suppl. 1), S26–S29. 10.1016/j.ijantimicag.2006.05.007 [DOI] [PubMed] [Google Scholar]
  147. Svanborg C., Bergsten G., Fischer H., Godaly G., Gustafsson M., Karpman D., et al. (2006). Uropathogenic Escherichia coli as a model of host-parasite interaction. Curr. Opin. Microbiol. 9, 33–39. 10.1016/j.mib.2005.12.012 [DOI] [PubMed] [Google Scholar]
  148. Tan C. K., Carey A. J., Cui X., Webb R. I., Ipe D., Crowley M., et al. (2012). Genome-wide mapping of cystitis due to Streptococcus agalactiae and Escherichia coli in mice identifies a unique bladder transcriptome that signifies pathogen-specific antimicrobial defense against urinary tract infection. Infect. Immun. 80, 3145–3160. 10.1128/IAI.00023-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Tasevska N., Runswick S. A., McTaggart A., Bingham S. A. (2005). Urinary sucrose and fructose as biomarkers for sugar consumption. Cancer Epidemiol. Biomarkers Prevent. 14, 1287–1294. 10.1158/1055-9965.EPI-04-0827 [DOI] [PubMed] [Google Scholar]
  150. Tielen P., Rosin N., Meyer A. K., Dohnt K., Haddad I., Jänsch L., et al. (2013). Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions. PLoS ONE 8:e71845. 10.1371/journal.pone.0071845 [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Torffvit O., Agardh C. D. (1993). Tubular secretion of Tamm-Horsfall protein is decreased in type 1 (insulin-dependent) diabetic patients with diabetic nephropathy. Nephron 65, 227–231. 10.1159/000187479 [DOI] [PubMed] [Google Scholar]
  152. Torzewska A., Budzynska A., Bialczak-Kokot M., Rózalski A. (2014). In vitro studies of epithelium-associated crystallization caused by uropathogens during urinary calculi development. Microb. Pathog. 71–72, 25–31. 10.1016/j.micpath.2014.04.007 [DOI] [PubMed] [Google Scholar]
  153. Torzewska A., Rózalski A. (2014). In vitro studies on the role of glycosaminoglycans in crystallization intensity during infectious urinary stones formation. APMIS 122, 505–511. 10.1111/apm.12191 [DOI] [PubMed] [Google Scholar]
  154. Torzewska A., Rózalski A. (2015). Various intensity of Proteus mirabilis-induced crystallization resulting from the changes in the mineral composition of urine. Acta Biochim. Pol. 62, 127–132. 10.18388/abp.2014_882 [DOI] [PubMed] [Google Scholar]
  155. Torzewska A., Staczek P., Rózalski A. (2003). Crystallization of urine mineral components may depend on the chemical nature of Proteus endotoxin polysaccharides. J. Med. Microbiol. 52, 471–477. 10.1099/jmm.0.05161-0 [DOI] [PubMed] [Google Scholar]
  156. Ulett G. C., Totsika M., Schaale K., Carey A. J., Sweet M. J., Schembri M. A. (2013). Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr. Opin. Microbiol. 16, 100–107. 10.1016/j.mib.2013.01.005 [DOI] [PubMed] [Google Scholar]
  157. Uppuluri P., Dinakaran H., Thomas D. P., Chaturvedi A. K., Lopez-Ribot J. L. (2009). Characteristics of Candida albicans biofilms grown in a synthetic urine medium. J. Clin. Microbiol. 47, 4078–4083. 10.1128/JCM.01377-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Vebø H. C., Solheim M., Snipen L., Nes I. F., Brede D. A. (2010). Comparative genomic analysis of pathogenic and probiotic Enterococcus faecalis isolates, and their transcriptional responses to growth in human urine. PLoS ONE 5:e12489. 10.1371/journal.pone.0012489 [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Vejborg R. M., de Evgrafov M. R., Phan M. D., Totsika M., Schembri M. A., Hancock V. (2012). Identification of genes important for growth of asymptomatic bacteriuria Escherichia coli in urine. Infect. Immun. 80, 3179–3188. 10.1128/IAI.00473-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Watts R. E., Hancock V., Ong C. L., Vejborg R. M., Mabbett A. N., Totsika M., et al. (2010). Escherichia coli isolates causing asymptomatic bacteriuria in catheterized and noncatheterized individuals possess similar virulence properties. J. Clin. Microbiol. 48, 2449–2458. 10.1128/JCM.01611-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Watts R. E., Tan C. K., Ulett G. C., Carey A. J., Totsika M., Idris A., et al. (2012a). Escherichia coli 83972 expressing a P fimbriae oligosaccharide receptor mimic impairs adhesion of uropathogenic E. coli. J. Infect. Dis. 206, 1242–1249. 10.1093/infdis/jis493 [DOI] [PubMed] [Google Scholar]
  162. Watts R. E., Totsika M., Challinor V. L., Mabbett A. N., Ulett G. C., De Voss J. J., et al. (2012b). Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect. Immun. 80, 333–344. 10.1128/IAI.05594-11 [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Weinberg E. D. (1978). Iron and infection. Microbiol. Rev. 42, 45–66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Wenzler-Röttele S., Dettenkofer M., Schmidt-Eisenlohr E., Gregersen A., Schulte-Monting J., Tvede M. (2006). Comparison in a laboratory model between the performance of a urinary closed system bag with double non-return valve and that of a single valve system. Infection 34, 214–218. 10.1007/s15010-006-5626-2 [DOI] [PubMed] [Google Scholar]
  165. Wernli L., Bonkat G., Gasser T. C., Bachmann A., Braissant O. (2013). Use of isothermal microcalorimetry to quantify the influence of glucose and antifungals on the growth of Candida albicans in urine. J. Appl. Microbiol. 115, 1186–1193. 10.1111/jam.12306 [DOI] [PubMed] [Google Scholar]
  166. Wilks S. A., Fader M. J., Keevil C. W. (2015). Novel insights into the Proteus mirabilis crystalline biofilm using real-time imaging. PLoS ONE 10:e0141711. 10.1371/journal.pone.0141711 [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Wishart D. S., Knox C., Guo A. C., Eisner R., Young N., Gautam B., et al. (2009). HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 37, D603–D610. 10.1093/nar/gkn810 [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Wullt B. (2003). The role of P fimbriae for Escherichia coli establishment and mucosal inflammation in the human urinary tract. Int. J. Antimicrob. Agents 21, 605–621. 10.1016/S0924-8579(02)00328-X [DOI] [PubMed] [Google Scholar]
  169. Wullt B., Connell H., Röllano P., Månsson W., Colleen S., Svanborg C. (1998). Urodynamic factors influence the duration of Escherichia coli bacteriuria in deliberately colonized cases. J. Urol. 159, 2057–2062. 10.1016/S0022-5347(01)63246-4 [DOI] [PubMed] [Google Scholar]
  170. Zdziarski J., Brzuszkiewicz E., Wullt B., Liesegang H., Biran D., Voigt B., et al. (2010). Host imprints on bacterial genomes–rapid, divergent evolution in individual patients. PLoS Pathog. 6:e1001078. 10.1371/journal.ppat.1001078 [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Frontiers in Cellular and Infection Microbiology are provided here courtesy of Frontiers Media SA

RESOURCES