Abstract
Proteasomes are multicatalytic proteinase complexes that function as a major nonlysosomal proteolytic system in all eukaryotes. These particles are made up of 13-15 nonidentical subunits, and they exhibit multiple endopeptidase activities that promote the intracellular turnover of abnormal polypeptides and short-lived regulatory proteins. Although the biochemical characterization of proteasomes has been quite extensive, and although a number of the genes encoding proteasome subunits have been cloned from various organisms, there is still much to be learned about their function in vivo and what role(s) they might play during development. Here, we report the identification of the l(3)73Ai1 allele of Drosophila melanogaster as a dominant temperature-sensitive lethal mutation in a gene encoding a component of the proteasome, thus opening the way for future genetic and developmental studies on this important proteolytic system in a higher eukaryote.
Full text
PDF![8842](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1bc/47456/1bb0083afca5/pnas01476-0093.png)
![8843](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1bc/47456/cd5cccd85f5d/pnas01476-0094.png)
![8844](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1bc/47456/1454cfde5074/pnas01476-0095.png)
![8845](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1bc/47456/18a1e50b85fb/pnas01476-0096.png)
![8846](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1bc/47456/0adce3559f7b/pnas01476-0097.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahn J. Y., Hong S. O., Kwak K. B., Kang S. S., Tanaka K., Ichihara A., Ha D. B., Chung C. H. Developmental regulation of proteolytic activities and subunit pattern of 20 S proteasome in chick embryonic muscle. J Biol Chem. 1991 Aug 25;266(24):15746–15749. [PubMed] [Google Scholar]
- Amsterdam A., Pitzer F., Baumeister W. Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):99–103. doi: 10.1073/pnas.90.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belote J. M., Hoffmann F. M., McKeown M., Chorsky R. L., Baker B. S. Cytogenetic analysis of chromosome region 73AD of Drosophila melanogaster. Genetics. 1990 Aug;125(4):783–793. doi: 10.1093/genetics/125.4.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dieckmann C. L., Tzagoloff A. Assembly of the mitochondrial membrane system. CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. J Biol Chem. 1985 Feb 10;260(3):1513–1520. [PubMed] [Google Scholar]
- Driscoll J., Goldberg A. L. Skeletal muscle proteasome can degrade proteins in an ATP-dependent process that does not require ubiquitin. Proc Natl Acad Sci U S A. 1989 Feb;86(3):787–791. doi: 10.1073/pnas.86.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emori Y., Tsukahara T., Kawasaki H., Ishiura S., Sugita H., Suzuki K. Molecular cloning and functional analysis of three subunits of yeast proteasome. Mol Cell Biol. 1991 Jan;11(1):344–353. doi: 10.1128/mcb.11.1.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eytan E., Ganoth D., Armon T., Hershko A. ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7751–7755. doi: 10.1073/pnas.86.20.7751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frentzel S., Troxell M., Haass C., Pesold-Hurt B., Glätzer K. H., Kloetzel P. M. Molecular characterization of the genomic regions of the Drosophila alpha-type subunit proteasome genes PROS-Dm28.1 and PROS-Dm35. Eur J Biochem. 1992 May 1;205(3):1043–1051. doi: 10.1111/j.1432-1033.1992.tb16872.x. [DOI] [PubMed] [Google Scholar]
- Friedman H., Goebel M., Snyder M. A homolog of the proteasome-related RING10 gene is essential for yeast cell growth. Gene. 1992 Dec 1;122(1):203–206. doi: 10.1016/0378-1119(92)90051-p. [DOI] [PubMed] [Google Scholar]
- Fujiwara T., Tanaka K., Orino E., Yoshimura T., Kumatori A., Tamura T., Chung C. H., Nakai T., Yamaguchi K., Shin S. Proteasomes are essential for yeast proliferation. cDNA cloning and gene disruption of two major subunits. J Biol Chem. 1990 Sep 25;265(27):16604–16613. [PubMed] [Google Scholar]
- Goldberg A. L., Rock K. L. Proteolysis, proteasomes and antigen presentation. Nature. 1992 Jun 4;357(6377):375–379. doi: 10.1038/357375a0. [DOI] [PubMed] [Google Scholar]
- Haass C., Kloetzel P. M. The Drosophila proteasome undergoes changes in its subunit pattern during development. Exp Cell Res. 1989 Jan;180(1):243–252. doi: 10.1016/0014-4827(89)90228-0. [DOI] [PubMed] [Google Scholar]
- Heinemeyer W., Kleinschmidt J. A., Saidowsky J., Escher C., Wolf D. H. Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J. 1991 Mar;10(3):555–562. doi: 10.1002/j.1460-2075.1991.tb07982.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
- Holden J. J., Suzuki D. T. Temperature-sensitive mutations in Drosophila melanogaster. XII. The genetic and developmental effects of dominant lethals on chromosome 3. Genetics. 1973 Mar;73(3):445–458. doi: 10.1093/genetics/73.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawahara H., Yokosawa H. Cell cycle-dependent change of proteasome distribution during embryonic development of the ascidian Halocynthia roretzi. Dev Biol. 1992 May;151(1):27–33. doi: 10.1016/0012-1606(92)90210-8. [DOI] [PubMed] [Google Scholar]
- Klein U., Gernold M., Kloetzel P. M. Cell-specific accumulation of Drosophila proteasomes (MCP) during early development. J Cell Biol. 1990 Dec;111(6 Pt 1):2275–2282. doi: 10.1083/jcb.111.6.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klemenz R., Weber U., Gehring W. J. The white gene as a marker in a new P-element vector for gene transfer in Drosophila. Nucleic Acids Res. 1987 May 26;15(10):3947–3959. doi: 10.1093/nar/15.10.3947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee D. H., Tanaka K., Tamura T., Chung C. H., Ichihara A. PRS3 encoding an essential subunit of yeast proteasomes homologous to mammalian proteasome subunit C5. Biochem Biophys Res Commun. 1992 Jan 31;182(2):452–460. doi: 10.1016/0006-291x(92)91753-d. [DOI] [PubMed] [Google Scholar]
- McKeown M., Belote J. M., Baker B. S. A molecular analysis of transformer, a gene in Drosophila melanogaster that controls female sexual differentiation. Cell. 1987 Feb 13;48(3):489–499. doi: 10.1016/0092-8674(87)90199-1. [DOI] [PubMed] [Google Scholar]
- Schuldt C., Kloetzel P. M. Analysis of cytoplasmic 19 S ring-type particles in Drosophila which contain hsp 23 at normal growth temperature. Dev Biol. 1985 Jul;110(1):65–74. doi: 10.1016/0012-1606(85)90064-8. [DOI] [PubMed] [Google Scholar]
- Steller H., Pirrotta V. A transposable P vector that confers selectable G418 resistance to Drosophila larvae. EMBO J. 1985 Jan;4(1):167–171. doi: 10.1002/j.1460-2075.1985.tb02332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tamura T., Tanaka K., Kumatori A., Yamada F., Tsurumi C., Fujiwara T., Ichihara A., Tokunaga F., Aruga R., Iwanaga S. cDNA cloning and sequencing of component C5 of proteasomes from rat hepatoma cells. FEBS Lett. 1990 May 7;264(1):91–94. doi: 10.1016/0014-5793(90)80773-c. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Tamura T., Yoshimura T., Ichihara A. Proteasomes: protein and gene structures. New Biol. 1992 Mar;4(3):173–187. [PubMed] [Google Scholar]
- Thummel C. S., Boulet A. M., Lipshitz H. D. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene. 1988 Dec 30;74(2):445–456. doi: 10.1016/0378-1119(88)90177-1. [DOI] [PubMed] [Google Scholar]