Skip to main content
UKPMC Funders Author Manuscripts logoLink to UKPMC Funders Author Manuscripts
. Author manuscript; available in PMC: 2016 Dec 17.
Published in final edited form as: Phyton. 2015 Dec 17;55(2):201–214. doi: 10.12905/0380.phyton55(2)2015-0201

Terricolous Lichens in the Glacier Forefield of the Pasterze (Eastern Alps, Carinthia, Austria)

Peter O Bilovitz *), Anja Wallner, Veronika Tutzer, Juri Nascimbene **), Helmut Mayrhofer *)
PMCID: PMC4746754  EMSID: EMS66977  PMID: 26877565

Summary

The investigation of lichens on soil, plant debris and terricolous mosses in the glacier forefield of the Pasterze yielded 35 lichen species. Placidiopsis oreades Breuss (Verrucariales) is new to Austria. Three sampling sites were established at increasing distance from the glacier, in order to compare species diversity, abundance and composition within the forefield and with four other glacier forefields of the Eastern Alps.

Keywords: Lichenized Ascomycetes, Lichenes. – Biodiversity, ecology, flora, floristics. – Alps, glacier forefield, glacier retreat

1. Introduction

Glacier retreat on a global scale started with the end of the Little Ice Age around 1850. Since 1980, a significant global warming has led to glacier retreat becoming increasingly rapid and ubiquitous. In the past decades, the majority of glaciers in the Alps has experienced considerable mass losses. Currently, around 0.5 % of the Austrian territory is covered by ice (Sulzer & Lieb 2009). In the glacier year 2012/2013, 90 % of the surveyed Austrian glaciers retreated (Fischer 2014), also the Pasterze, with an average length loss of 41 metres (2012: −97.3 m; 2011: −40.3 m).

The growing areas of recently bared glacier forefields are providing new ecological niches for pioneer organisms such as soil lichens, but little is known about their colonization patterns in these special habitats.

In the framework of a project on the impact of changing local conditions on lichen occurrence in glacier retreat regions, we investigated the terricolous lichen biota of five glacier forefields in the Eastern Alps (see also Bilovitz & al. 2014a, 2014b, 2014c, 2015). The floristic data from the forefield of the Pasterze glacier (Fig. 1) in Carinthia, Austria are presented in this paper.

Fig. 1.

Fig. 1

Pasterze glacier and its forefield, Johannisberg in the background. – Phot. P. O. Bilovitz, 05.IX.2013.

2. Investigation Area

With a current length of about 8 km, the Pasterze is the longest glacier in the Eastern Alps, situated within the Hohe Tauern mountain range in the province of Carinthia, directly beneath Austria’s highest mountain, the pyramid-shaped Großglockner (3798 m). The Pasterze can be easily reached via the Großglockner High Alpine Road, which connects the provinces Salzburg and Carinthia. The Kaiser-Franz-Josefs-Höhe visitors’ centre at 2369 m offers a panoramic view over the Pasterze with its forefield and the surrounding mountains.

The glacier forefield of the Pasterze is situated within the so-called Tauern window, a geological structure, where high-grade metamorphic rocks of the underlying Penninic nappes crop out. The dominant rock types around the Pasterze mainly comprise calcareous mica-schists and greenschists (= prasinite). Detailed information about the geology of the Glockner Group can be found in Frank 1969, Krainer 1988 and Krainer 1994. Burger & Franz 1969 gave an overview on the soil development of the Pasterze area.

The Glockner Group is situated in the transition zone of the atlantic-continental climate regime (Tollner 1969). According to Paschinger 1976, three climate types can be distinguished: the continental valley climate, the weak continental slope climate and the atlantic frost climate of higher altitudes. According to this, the Tauern valleys are relatively dry, for example Heiligenblut (1380 m) with an average annual precipitation of 825 mm (1971–1980, Tschernutter 1982), whereas the continental character of the climate becomes weaker with increasing elevation.

Standard measurements of the Pasterze glacier have been conducted annually since 1879, thus the amount of data is remarkable. Since the end of the Little Ice Age, the glacier has retreated almost continuously, only interrupted by few periods of stagnation or slight advances (Sulzer & Lieb 2009). The discovery of parts of coniferous trees and pieces of peat (dated back mainly to the early Holocene) in the area of the Pasterze forefield, washed out by the stream from under the present ice, provided indications of smaller stages of the glacier in postglacial time (Slupetzky 1993, Slupetzky & al. 1998, Nicolussi & Patzelt 2000, Nicolussi & Patzelt 2001, Drescher-Schneider & Kellerer-Pirklbauer 2008).

The Hohe Tauern mountain range, in particular the area of the Großglockner and the surroundings of the Pasterze, has been of special interest for botanists for a long time. Details on the natural history exploration of the Glockner Group were provided by Gams 1936 in the first part of his paper. The second part deals with the living conditions, the third part with the flora and the fourth part with the vegetation of the area, followed by an overview of the plant communities plus a vegetation map. Friedel 1956 published a vegetation map of the environs of the Pasterze together with a comprehensive annotation. The map represents the state of the area in the year 1934. At that time, the glacier reached the Elisabethfelsen (2156 m). Friedel 1969 presented a short contribution on the vegetation of the area with an enclosed vegetation map. A more recent vegetation map of the Großglockner area is provided by Schiechtl & Stern 1985. Böhm 1969 dealt with the timber line of the Glockner Group. A contribution on the vegetation development of the forefield of the Pasterze was presented by Zollitsch 1969, whereas Franz 1969 reported on the colonization of the forefield with invertebrates. The local flora and vegetation of the Pasterze glacier forefield was presented and discussed in respect to glaciology and vegetation dynamics by Wittmann & al. 2009, dealing with the following plant communities: Seslerio-Caricetum sempervirentis, Rhododendretum ferruginei, Salicetum retusae-reticulatae, Salicetum helveticae, Salicetum waldsteinianae, Dryadetum octopetalae, Drabion hoppeanae, Caricetum frigidae as well as two rare communities of alpine alluvial habitats, namely the Carex bicolor-community and the Carex atrofusca-community; additionally, the Astero bellidiastro-Kobresietum simpliciusculae was outlined.

A remarkable locality is the Gamsgrube, situated above the Pasterze within a southwest exposed massive bowl-shaped cirque of the Fuscherkarkopf. For the most part, it is covered with wind-driven sand, thus providing unique living conditions in the Alps (e. g. Friedel 1951, Gams 1951, Hartl 1988). The Gamsgrube is the “locus classicus” of Braya alpina Sternb. & Hoppe (Sternberg & Hoppe 1815), a rare and endangered endemic species of the Eastern Alps (Fischer & al. 2008).

A compilation of the lichens of Carinthia was presented by Türk & al. 2004. Türk & Hafellner 1992 provided a comprehensive list of 660 lichen species and Hafellner & Türk 1995 a list with more than 140 lichenicolous fungi both lichenized and non-lichenized, occurring in the Carinthian part of the Hohe Tauern National Park. Egger 1997 surveyed site dynamics and succession of lichen colonization in the glacier forefield of the Winkelkees in the Seebach valley, situated in the Carinthian part of the Hohe Tauern National Park.

3. Material and Methods

Sampling location: Austria, Carinthia, Hohe Tauern, Glockner Group, Hohe Tauern National Park, NW of Heiligenblut, 47°04’N/12°44’–45’E, 2075–2090 m, glacier forefield of the Pasterze, 05.IX.2013, leg. P. Bilovitz, V. Tutzer & A. Wallner.

Three sampling sites were established at increasing distance from the glacier, corresponding to a gradient of moraine age: site 1 = c. 600 m (ice-free for c. 30 years), site 2 = c. 1000 m (ice-free for c. 35 years), site 3 = c. 1300 m (ice-free for c. 60 years). In each site, lichens were surveyed within five 1 × 1 m randomly placed plots, both on soil and on plant debris or decaying terricolous mosses. Spots with larger stones were avoided. Phanerogams were present in all three sites, but, with increasing distance from the glacier, diversity rose and vegetation cover became significantly denser. Each plot was divided into 10 × 10 cm quadrats (Bilovitz & al. 2014a: Fig. 2), in order to obtain data on species frequency (max. frequency/plot = 100). For each species, specimens were collected for a more accurate identification in the laboratory.

The specimens have been identified mainly with the aid of Wirth & al. 2013, using routine light microscopy techniques. Some of the identifications required verification by using standardized thin-layer chromatography (TLC), following the protocols of White & James 1985 and Orange & al. 2001. The specimens are preserved in the herbarium of the Institute of Plant Sciences, University of Graz (GZU). The nomenclature mainly follows Wirth & al. 2013, or other modern treatments.

4. Results and Discussion

In total, 35 lichen species were found in the three sampling sites (Table 1). A number of lichens showed the influence of calcareous substrate, for instance Allocetraria madreporiformis and Vulpicida juniperinus.

Table 1.

List of lichenized taxa with their substrata and the frequency of each species in the three sampling sites (deb = on plant debris or decaying terricolous mosses; ter = on soil).

Frequency
Taxon Substratum Site 1 Site 2 Site 3
Allocetraria madreporiformis (Ach.) Kärnefelt & A. Thell ter 0 20 10
Bacidia bagliettoana (A. Massal. & De Not.) Jatta deb 0 1 1
Bilimbia lobulata (Sommerf.) Hafellner & Coppins ter 0 0 3
Blennothallia crispa (Huds.) Otálora, P. M. Jørg. & Wedin ter 3 1 0
Caloplaca stillicidiorum s. l. deb 1 38 32
Caloplaca tiroliensis Zahlbr. deb 0 37 50
Cetraria ericetorum Opiz ter 0 0 4
Cetraria islandica (L.) Ach. ter 2 2 1
Cetraria muricata (Ach.) Eckfeldt ter 0 0 20
Cladonia macroceras (Delise) Hav. ter 0 0 2
Cladonia pyxidata s. l. ter 0 35 122*)
Cladonia symphycarpia (Flörke) Fr. ter 1 0 87
Diploschistes muscorum (Scop.) R. Sant. Cladonia sp. 0 0 5
Flavocetraria cucullata (Bellardi) Kärnefelt & A. Thell ter 0 1 1
Flavocetraria nivalis (L.) Kärnefelt & A. Thell ter 0 6 15
Fulgensia bracteata (Hoffm.) Räsänen subsp. deformis (Erichsen) Poelt ter 1 62 61
Hypogymnia physodes (L.) Nyl. deb 0 2 1
Lecanora bryopsora (Doppelb. & Poelt) Hafellner & Türk deb 0 0 9
Lecanora epibryon (Ach.) Ach. deb 0 1 10
Lecanora hagenii (Ach.) Ach. var. fallax Hepp deb 0 35 47
Lecidella wulfenii (Hepp) Körb. deb 0 0 1
Lepraria eburnea J. R. Laundon deb 0 0 7
Megaspora verrucosa (Ach.) Hafellner & V. Wirth deb 1 1 3
Peltigera rufescens (Weiss) Humb. ter 69 15 28
Physconia muscigena (Ach.) Poelt ter 0 2 43
Placidiopsis oreades Breuss ter 0 0 1
Pseudevernia furfuracea (L.) Zopf var. ceratea (Ach.) D. Hawksw. deb 0 1 1
Rinodina candidogrisea Hafellner, Muggia & Obermayer deb 0 2 1
Rinodina roscida (Sommerf.) Arnold deb 0 0 1
Scytinium intermedium (Arnold) Otálora, P. M. Jørg. & Wedin ter 0 2 0
Solorina bispora Nyl. ter 0 3 1
Stereocaulon alpinum Laurer ter 1 19 71
Stereocaulon nanodes Tuck. ter 0 1 0
Thamnolia vermicularis (Sw.) Schaer. ter 1 0 16
Vulpicida juniperinus (L.) J.-E. Mattsson & M. J. Lai ter 0 2 26
*)

doubtful frequency data.

The diversity of terricolous lichens near the front of the glacier was very low. The first lichens occurred at a distance of about 600 m from the front (site 1), and only 9 species were found in this sampling site. The foliose lichen Peltigera rufescens was the most frequent species (frequency of 69). The rest of the species only occurred with very low frequency values (1–3).

At a distance of about 1000 m to the glacier (site 2), the number of species increased significantly to 23. Fulgensia bracteata subsp. deformis reached the highest frequency value (62), followed by Caloplaca stillicidiorum s. l. (38), C. tiroliensis (37), Lecanora hagenii var. fallax (35), Cladonia pyxidata s. l. (35), Allocetraria madreporiformis (20), Stereocaulon alpinum (19), Peltigera rufescens (15) and Flavocetraria nivalis (6). The rest of the species only occurred with very low frequency values (1–3).

At a distance of about 1300 m from the glacier (site 3), we observed a further increase in species diversity. In total, 32 species were found in this site. The fruticose lichens Cladonia pyxidata s. l. (122), Cladonia symphycarpia (87) and Stereocaulon alpinum (71) reached the highest frequency values, followed by Fulgensia bracteata subsp. deformis (61), Caloplaca tiroliensis (50), Lecanora hagenii var. fallax (47), Physconia muscigena (43), Caloplaca stillicidiorum s. l. (32), Peltigera rufescens (28), Vulpicida juniperinus (26), Cetraria muricata (20), Thamnolia vermicularis (16), Flavocetraria nivalis (15), Allocetraria madreporiformis (10) and Lecanora epibryon (10). The rest of the species occurred with frequency values less than ten.

In comparison to the forefields of the Morteratsch glacier in Graubünden (Bilovitz & al. 2015) with 13 lichen species, the Rötkees in South Tyrol (Bilovitz & al. 2014a) with 29 species, the Matscherferner in South Tyrol (Bilovitz & al. 2014b) with 34 species and the Gaisbergferner in Tyrol (Bilovitz & al. 2014c) with 39 species, the total diversity of the Pasterze forefield is similar to that of the Matscherferner and the Gaisbergferner. Considering the species composition, the glacier forefield of the Gaisbergferner is most similar to that of the Pasterze, 21 out of 53 species being shared (Table 2).

Table 2.

Terricolous lichens in the glacier forefield of the Morteratsch glacier (1; Bilovitz & al. 2015), Rötkees (2; Bilovitz & al. 2014a), Matscherferner (3; Bilovitz & al. 2014b), Pasterze (4; this paper), Gaisbergferner (5; Bilovitz & al. 2014c).

Taxon 1 2 3 4 5
Alectoria ochroleuca (Hoffm.) A. Massal. +
Allocetraria madreporiformis (Ach.) Kärnefelt & A. Thell + +
Amandinea punctata (Hoffm.) Coppins & Scheid. +
Arthrorhaphis citrinella (Ach.) Poelt +
Arthrorhaphis spec. [A. alpina or A. vacillans] +
Bacidia bagliettoana (A. Massal. & De Not.) Jatta + + +
Bilimbia lobulata (Sommerf.) Hafellner & Coppins +
Bilimbia microcarpa (Th. Fr.) Th. Fr. +
Blennothallia crispa (Huds.) Otálora, P. M. Jørg. & Wedin +
Bryonora castanea (Hepp) Poelt +
Caloplaca ammiospila (Wahlenb.) H. Olivier + +
Caloplaca sinapisperma (Lam. & DC.) Maheu & Gillet +
Caloplaca stillicidiorum s. l. + + +
Caloplaca tiroliensis Zahlbr. + +
Catapyrenium cinereum (Pers.) Körb. +
Cetraria ericetorum Opiz + + + +
Cetraria islandica (L.) Ach. + + + + +
Cetraria muricata (Ach.) Eckfeldt + + + +
Cladonia amaurocraea (Flörke) Schaer. +
Cladonia arbuscula s. l. + +
Cladonia arbuscula (Wallr.) Flot. subsp. squarrosa (Wallr.) Ruoss + +
Cladonia borealis S. Stenroos + +
Cladonia cariosa s. l. + + + +
Cladonia fimbriata (L.) Fr. +
Cladonia gracilis (L.) Willd. +
Cladonia macroceras (Delise) Hav. + + + + +
Cladonia cf. mitis Sandst. +
Cladonia cf. pleurota (Flörke) Schaer. +
Cladonia pyxidata s. l. + + + + +
Cladonia cf. subulata (L.) Weber ex F. H. Wigg. +
Cladonia symphycarpia (Flörke) Fr. + + +
Cladonia uncialis (L.) Weber ex F H. Wigg. +
Cladonia spec. +
Dactylina ramulosa (Hook.) Tuck. +
Dibaeis baeomyces (L. f.) Rambold & Hertel +
Diploschistes muscorum (Scop.) R. Sant. +
Flavocetraria cucullata (Bellardi) Kärnefelt & A. Thell + +
Flavocetraria nivalis (L.) Kärnefelt & A. Thell + + +
Fulgensia bracteata (Hoffm.) Räsänen subsp. deformis (Erichsen) Poelt + +
Fuscopannaria praetermissa (Nyl.) P. M. Jørg. +
Hypogymnia physodes (L.) Nyl. +
Lecanora bryopsora (Doppelb. & Poelt) Hafellner & Türk + +
Lecanora epibryon (Ach.) Ach. +
Lecanora hagenii (Ach.) Ach. var. fallax Hepp + +
Lecidea berengeriana (A. Massal.) Th. Fr. + +
Lecidea hypnorum Lib. + +
Lecidella wulfenii (Hepp) Körb. + + +
Lecidoma demissum (Rutstr.) Gotth. Schneid. & Hertel +
Lepraria diffusa (J. R. Laundon) Kukwa + +
Lepraria eburnea J. R. Laundon + + +
Lepraria finkii (Hue) R. C. Harris +
Megaspora verrucosa (Ach.) Hafellner & V. Wirth + +
Micarea incrassata Hedl. +
Ochrolechia inaequatula sensu auct. +
Peltigera didactyla (With.) J. R. Laundon +
Peltigera extenuata (Nyl. ex Vain.) Lojka +
Peltigera lepidophora (Nyl. ex Vain.) Bitter + +
Peltigera rufescens (Weiss) Humb. + + + + +
Phaeorrhiza nimbosa (Fr.) H. Mayrhofer & Poelt +
Physconia muscigena (Ach.) Poelt +
Placidiopsis oreades Breuss +
Placynthiella icmalea (Ach.) Coppins & P. James +
Protopannaria pezizoides (Weber) P M. Jørg. & S. Ekman +
Protothelenella sphinctrinoidella (Nyl.) H. Mayrhofer & Poelt +
Pseudevernia furfuracea (L.) Zopf var. ceratea (Ach.) D. Hawksw. +
Psoroma hypnorum (Vahl) Gray +
Psoroma tenue Henssen var. boreale Henssen + + +
Pycnothelia papillaria (Ehrh.) Dufour +
Rinodina candidogrisea Hafellner, Muggia & Obermayer +
Rinodina mniaraea (Ach.) Körb. var. mniaraea + + +
Rinodina mniaraea (Ach.) Körb. var. cinnamomea Th. Fr. +
Rinodina mniaraea (Ach.) Körb. var. mniaraeiza (Nyl.) H. Magn. +
Rinodina roscida (Sommerf.) Arnold + +
Scytinium intermedium (Arnold) Otálora, P. M. Jørg. & Wedin +
Solorina bispora Nyl. + + +
Solorina crocea (L.) Ach. +
Sporodictyon terrestre (Th. Fr.) S. Savić & Tibell +
Stereocaulon alpinum Laurer + + + + +
Stereocaulon nanodes Tuck. + +
Tetramelas insignis (Nägeli) Kalb +
Thamnolia vermicularis (Sw.) Schaer. var. vermicularis + + + +
Thamnolia vermicularis (Sw.) Schaer. var. subuliformis (Ehrh.) Schaer. + +
Toninia spec. +
Trapeliopsis granulosa (Hoffm.) Lumbsch +
Vulpicida juniperinus (L.) J.-E. Mattsson & M. J. Lai +
sterile, sorediate crustose lichen 1 +
sterile, sorediate crustose lichen 2 +

The number of lichen species in all five glacier forefields adds up to a total of 83. Five species occurred in each of them, namely Cetraria islandica, Cladonia macroceras, C. pyxidata s. l., Peltigera rufescens and Stereocaulon alpinum. The latter is a fruticose species and presumably the most constant soil lichen occurring in glacier forelands of the Alps (see Bilovitz & al. 2015). In contrast to the four other investigated glacier forefields in the Eastern Alps (Bilovitz & al. 2014a, 2014b, 2014c, 2015), Stereocaulon alpinum was not the most frequent species in the Pasterze forefield.

The soil-inhabiting squamulose lichen Placidiopsis oreades Breuss (Verrucariales) is new to Austria. According to Breuss 1996, the species has a scattered distribution and is known from the Alps, the Carpathians and Kirghizia. In the Alps there are just few records, namely from Bavaria (Germany) and the canton Bern (Switzerland).

The commonly sterile sorediate lichen Rinodina candidogrisea, a recently described species, seems to be relatively common in the Alps, where it occurs from the upper montane to the alpine vegetation belt (Hafellner & al. 2012). To date, the species is known from the Austrian provinces Carinthia, Styria, Upper Austria and Vorarlberg, the German state Bavaria, the Italian provinces Friuli-Venezia Giulia, Piemonte and Trentino-Alto Adige, Slovenia and the Swiss canton Graubünden.

The results in this paper as well as the results in Bilovitz & al. 2014a, 2014b, 2014c, 2015 show that increasing lichen diversity and abundance directly correlate with the increasing age of the moraine. Similar findings were presented by Türk & Erschbamer 2010a, 2010b, who listed 31 lichens growing on soil, plant debris and terricolous mosses from the Rotmoosferner in Tyrol and found the same pattern of lichen diversity in relation to moraine age.

Acknowledgements

We would like to thank the administration of the National Park Hohe Tauern Carinthia and the Amt der Kärntner Landesregierung (Abteilung 8) for supporting our request for a scientific collecting permit, the Bezirkshauptmannschaft Spittal an der Drau (Bereich 10) for making out the permit, Peter Kosnik for the TLC, Othmar Breuss for the confirmation of Placidiopsis oreades, and Christian Scheuer as well as Herwig Teppner for critically reading the manuscript and general remarks. Financial support from the Austrian Science Fund (FWF project P25078-B16) and the University of Graz is gratefully acknowledged.

References

  1. Bilovitz PO, Nascimbene J, Tutzer V, Wallner A, Mayrhofer H. Terricolous lichens in the glacier forefield of the Rötkees (Eastern Alps, South Tyrol, Italy) Phyton (Horn, Austria) 2014a;54(2):245–250. doi: 10.12905/0380.phyton54(2)2014-0245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bilovitz PO, Tutzer V, Wallner A, Nascimbene J, Mayrhofer H. Terricolous lichens in the glacier forefield of the Matscherferner (Eastern Alps, South Tyrol, Italy) Acta ZooBot Austria. 2014b;150-151:197–202. [PMC free article] [PubMed] [Google Scholar]
  3. Bilovitz PO, Wallner A, Tutzer V, Nascimbene J, Mayrhofer H. Terricolous lichens in the glacier forefield of the Gaisbergferner (Eastern Alps, Tyrol, Austria) Phyton (Horn, Austria) 2014c;54(2):235–243. doi: 10.12905/0380.phyton54(2)2014-0235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bilovitz PO, Nascimbene J, Mayrhofer H. Terricolous lichens in the glacier forefield of the Morteratsch glacier (Eastern Alps, Graubünden, Switzerland) Phyton (Horn, Austria) 2015;55(2):193–199. doi: 10.12905/0380.phyton55(2)2015-0193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Böhm H. Die Waldgrenze der Glocknergruppe. In: Büdel J, Glaser U, editors. Neue Forschungen im Umkreis der Glocknergruppe. Vol. 21. Wissenschaftliche Alpenvereinshefte; 1969. pp. 143–167. [Google Scholar]
  6. Breuss O. Revision der Flechtengattung Placidiopsis (Verrucariaceae) Österreichische Zeitschrift für Pilzkunde. 1996;5:65–94. [Google Scholar]
  7. Burger R, Franz H. Die Bodenbildung in der Pasterzenlandschaft. In: Büdel J, Glaser U, editors. Neue Forschungen im Umkreis der Glocknergruppe. Vol. 21. Wissenschaftliche Alpenvereinshefte; 1969. pp. 253–264. 1 Karte. [Google Scholar]
  8. Drescher-Schneider R, Kellerer-Pirklbauer A. Gletscherschwund einst und heute – Neue Ergebnisse zur holozänen Vegetations- und Gletschergeschichte der Pasterze (Hohe Tauern, Österreich) Abhandlungen der geologischen Bundesanstalt in Wien. 2008;62:45–51. [Google Scholar]
  9. Egger G. Standortsdynamik und Sukzession der Flechtenbesiedlung im Winkelkees-Vorfeld des Seebachtales (Nationalpark Hohe Tauern, Österreich) Wissenschaftliche Mitteilungen aus dem Nationalpark Hohe Tauern. 1997;3:37–65. [Google Scholar]
  10. Fischer A. Gletscherbericht 2012/2013. Sammelbericht über die Gletschermessungen des Oesterreichischen Alpenvereins im Jahre 2013. 2014. pp. 34–40. Bergauf 02-2014. [Google Scholar]
  11. Fischer MA, Oswald K, Adler W. Exkursionsflora für Österreich, Liechtenstein und Südtirol. 3. Auflage Biologiezentrum der Oberösterreichischen Landesmuseen; Linz: 2008. [Google Scholar]
  12. Frank W. Geologie der Glocknergruppe. In: Büdel J, Glaser U, editors. Neue Forschungen im Umkreis der Glocknergruppe. Vol. 21. Wissenschaftliche Alpenvereinshefte; 1969. pp. 95–111. [Google Scholar]
  13. Franz H. Besiedlung der jüngst vom Eise freigegebenen Gletschervorfelder und ihrer Böden durch wirbellose Tiere. In: Büdel J, Glaser U, editors. Neue Forschungen im Umkreis der Glocknergruppe. Vol. 21. Wissenschaftliche Alpenvereinshefte; 1969. pp. 291–298. [Google Scholar]
  14. Friedel H. Das Drama von Gras und Sand am Pasterzenufer. Natur und Land. 1951;37(7-8):124–132. [Google Scholar]
  15. Friedel H. Die alpine Vegetation des obersten Mölltales (Hohe Tauern). Erläuterung zur Vegetationskarte der Umgebung der Pasterze (Großglockner) Vol. 16. Wissenschaftliche Alpenvereinshefte; 1956. pp. 1–153. 12 Tafeln + 27 Vegetationstabellen + 2 Vegetationskarten. [Google Scholar]
  16. Friedel H. Die Pflanzenwelt im Banne des Großglockners und des Pasterzengletschers. In: Büdel J, Glaser U, editors. Neue Forschungen im Umkreis der Glocknergruppe. Vol. 21. Wissenschaftliche Alpenvereinshefte; 1969. pp. 233–252. 1 Karte. [Google Scholar]
  17. Gams H. Beiträge zur pflanzengeographischen Karte Österreichs. I. Die Vegetation des Großglocknergebietes. Abhandlungen der zoologisch-botanischen Gesellschaft in Wien. 1936;16(2):1–79. [Google Scholar]
  18. Gams H. Die Gamsgrube an der Pasterze, das merkwürdigste „Hintergrasl“ der Alpen. Natur und Land. 1951;37(7-8):119–124. [Google Scholar]
  19. Hafellner J, Türk R. Über Funde lichenicoler Pilze und Flechten im Nationalpark Hohe Tauern (Kärntner Anteil, Österreich) Carinthia II. 1995;185 = 105:599–635. [Google Scholar]
  20. Hafellner J, Muggia L, Obermayer W. Rinodina candidogrisea, a new sorediate species from high altitudes in the Alps. Bibliotheca lichenologica. 2012;108:75–102. [Google Scholar]
  21. Hartl H. Die Gamsgrube, das merkwürdigste „Hintergrasl“ der Alpen. Carinthia II. 1988;178 = 98:17–21. [Google Scholar]
  22. Krainer K. Ein geologischer Streifzug durch Kärnten. Carinthia II. 1988;178 = 98:141–170. [Google Scholar]
  23. Krainer K, Nationalpark Hohe Tauern . Geologie – Nationalpark Hohe Tauern, Wissenschaftliche Schriften. Universitätsverlag Carinthia; Klagenfurt: 1994. [Google Scholar]
  24. Nicolussi K, Patzelt G. Discovery of early-Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. The Holocene. 2000;10(2):191–199. [Google Scholar]
  25. Nicolussi K, Patzelt G. Untersuchungen zur holozänen Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen) Zeitschrift für Gletscherkunde und Glazialgeologie. 2001;36(1-2):1–87. 2000. [Google Scholar]
  26. Orange A, James PW, White FJ. Microchemical methods for the identification of lichens. British Lichen Society; London: 2001. [Google Scholar]
  27. Paschinger H. Kärnten. Eine geographische Landeskunde Erster Teil: Allgemeine Darstellung. Verlag des Landesmuseums für Kärnten; Klagenfurt: 1976. [Google Scholar]
  28. Schiechtl von HM, Stern R. Wissenschaftliche Schriften des Nationalparks Hohe Tauern. Universitätsverlag Wagner; Innsbruck: 1985. Die aktuelle Vegetation der Hohen Tauern. Matrei in Osttirol und Großglockner. Vegetationskarten 1 : 25.000 mit Erläuterungen. mit 4 Karten. [Google Scholar]
  29. Slupetzky H. Holzfunde aus dem Vorfeld der Pasterze. Erste Ergebnisse von 14C-Datierungen. Zeitschrift für Gletscherkunde und Glazialgeologie. 1993;26(2):179–187. [Google Scholar]
  30. Slupetzky H, Krisai R, Lieb GK. Hinweise auf kleinere Gletscherstände der Pasterze (Nationalpark Hohe Tauern, Kärnten) im Postglazial – Ergebnisse von 14C-Datierungen und Pollenanalysen. Wissenschaftliche Mitteilungen aus dem Nationalpark Hohe Tauern. 1998;4:225–240. [Google Scholar]
  31. Sternberg von CM, Hoppe DH. Braya, eine neue Pflanzengattung. Denkschriften der königlich-baierischen botanischen Gesellschaft in Regensburg. 1815:65–75. 1 Abbildung. [Google Scholar]
  32. Sulzer W, Lieb GK. Die Gletscher im Wandel der Zeit – Gletschermonitoring am Beispiel der Pasterze. Vermessung und Geoinformation. 2009;3:371–382. [Google Scholar]
  33. Tollner H. Klima, Witterung und Wetter in der Großglocknergruppe. In: Büdel J, Glaser U, editors. Neue Forschungen im Umkreis der Glocknergruppe. Vol. 21. Wissenschaftliche Alpenvereinshefte; 1969. pp. 83–94. [Google Scholar]
  34. Tschernutter P. Niederschläge in Kärnten 1951 bis 1980. Schriftenreihe für Raumforschung und Raumplanung 26 1982. pp. 1‐40 (Teil I), 1‐135 (Teil II). [Google Scholar]
  35. Türk R, Erschbamer B. Die Flechten im Gletschervorfeld des Rotmoosferners. In: Koch E-M, Erschbamer B, editors. Glaziale und periglaziale Lebensräume im Raum Obergurgl. Vol. 1. Alpine Forschungsstelle; Obergurgl: 2010a. pp. 149–157. [Google Scholar]
  36. Türk R, Erschbamer B. Die Flechten im Gletschervorfeld des Rotmoosferners (Anhang) In: Koch E-M, Erschbamer B, editors. Glaziale und periglaziale Lebensräume im Raum Obergurgl. Vol. 1. Alpine Forschungsstelle; Obergurgl: 2010b. pp. 278–280. [Google Scholar]
  37. Türk R, Hafellner J. Flechten im Nationalpark Hohe Tauern – Kärntner Anteil (Österreich) Carinthia II. 1992;182 = 102:723–757. [Google Scholar]
  38. Türk R, Hafellner J, Taurer-Zeiner C. Sonderreihe Natur Kärnten. Vol. 2. Naturwissenschaftlicher Verein für Kärnten; Klagenfurt: 2004. Die Flechten Kärntens. Eine Bestandsaufnahme nach mehr als einem Jahrhundert lichenologischer Forschungen; pp. 1–333. [Google Scholar]
  39. White FJ, James PW. A new guide to microchemical techniques for the identification of lichen substances. Bulletin of the british Lichen Society. 1985;57(Suppl.):1–41. [Google Scholar]
  40. Wirth V, Hauck M, Schultz M. Die Flechten Deutschlands. Bände 1 und 2 Ulmer; Stuttgart: 2013. [Google Scholar]
  41. Wittmann H, Stöhr O, Pilsl P, Gewolf S. Das Gletschervorfeld der Pasterze (Glockner-Gruppe, Kärnten, Österreich) mit besonderer Berücksichtigung von Ökologie, Pflanzensoziologie und Naturschutzaspekten der „alpinen Schwemmlandbiotope“. Tuexenia, Beiheft. 2009;2:147–193. [Google Scholar]
  42. Zollitsch B. Die Vegetationsentwicklung im Pasterzenvorfeld. In: Büdel J, Glaser U, editors. Neue Forschungen im Umkreis der Glocknergruppe. Vol. 21. Wissenschaftliche Alpenvereinshefte; 1969. pp. 267–290. 1 Karte. [Google Scholar]

RESOURCES