Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Oct 1;90(19):9041–9045. doi: 10.1073/pnas.90.19.9041

Site-directed mutations in a highly conserved region of Bacillus thuringiensis delta-endotoxin affect inhibition of short circuit current across Bombyx mori midguts.

X J Chen 1, M K Lee 1, D H Dean 1
PMCID: PMC47497  PMID: 8415651

Abstract

Bacillus thuringiensis delta-endotoxins (Cry toxins) are insecticidal proteins of approximately 65 kDa in the proteolytically processed and active form. The structure of one of these toxins, CryIIIA, has been determined by Li et al. [Li, J., Carroll, J. & Ellar, D. J. (1991) Nature (London) 353, 815-821] and contains three domains. It is believed that other delta-endotoxins adopt similar three-dimensional structure. Li et al. proposed that the first domain is the membrane pore-forming domain. Previous work from our laboratory has shown that the second domain is the receptor binding domain, but the function of the third domain is unclear. Site-directed mutagenesis was used to convert the "arginine face" of one of five highly conserved regions, QRYRVRIRYAS of CryIAa (residues 525-535), to selected other residues. This sequence corresponds to the beta-sheet 17 of CryIIIA in the third domain. Mutations in the second and third arginine positions resulted in structural alterations in the protein and were poorly expressed in Escherichia coli. Toxins from genes mutated to replace lysine for the first and fourth arginines were unaltered in expression and structure, as measured by trypsin activation, CD spectra, and receptor binding, but were substantially reduced in their insecticidal properties and inhibition of short circuit current across Bombyx mori midguts. It is proposed that this region plays a role in toxin function as an ion channel.

Full text

PDF
9041

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almond B. D., Dean D. H. Suppression of protein structure destabilizing mutations in Bacillus thuringiensis delta-endotoxins by second site mutations. Biochemistry. 1993 Feb 2;32(4):1040–1046. doi: 10.1021/bi00055a007. [DOI] [PubMed] [Google Scholar]
  2. Balasubramaniam N. K., Veerisetty V., Gentry G. A. Herpesviral deoxythymidine kinases contain a site analogous to the phosphoryl-binding arginine-rich region of porcine adenylate kinase; comparison of secondary structure predictions and conservation. J Gen Virol. 1990 Dec;71(Pt 12):2979–2987. doi: 10.1099/0022-1317-71-12-2979. [DOI] [PubMed] [Google Scholar]
  3. Choma C. T., Surewicz W. K., Carey P. R., Pozsgay M., Raynor T., Kaplan H. Unusual proteolysis of the protoxin and toxin from Bacillus thuringiensis. Structural implications. Eur J Biochem. 1990 May 20;189(3):523–527. doi: 10.1111/j.1432-1033.1990.tb15518.x. [DOI] [PubMed] [Google Scholar]
  4. Convents D., Cherlet M., Van Damme J., Lasters I., Lauwereys M. Two structural domains as a general fold of the toxic fragment of the Bacillus thuringiensis delta-endotoxins. Eur J Biochem. 1991 Feb 14;195(3):631–635. doi: 10.1111/j.1432-1033.1991.tb15747.x. [DOI] [PubMed] [Google Scholar]
  5. Convents D., Houssier C., Lasters I., Lauwereys M. The Bacillus thuringiensis delta-endotoxin. Evidence for a two domain structure of the minimal toxic fragment. J Biol Chem. 1990 Jan 25;265(3):1369–1375. [PubMed] [Google Scholar]
  6. Dow J. A. Extremely high pH in biological systems: a model for carbonate transport. Am J Physiol. 1984 Apr;246(4 Pt 2):R633–R636. doi: 10.1152/ajpregu.1984.246.4.R633. [DOI] [PubMed] [Google Scholar]
  7. Ferré J., Real M. D., Van Rie J., Jansens S., Peferoen M. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5119–5123. doi: 10.1073/pnas.88.12.5119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ge A. Z., Pfister R. M., Dean D. H. Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product. Gene. 1990 Sep 1;93(1):49–54. doi: 10.1016/0378-1119(90)90134-d. [DOI] [PubMed] [Google Scholar]
  9. Goldberg A. L., Dice J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem. 1974;43(0):835–869. doi: 10.1146/annurev.bi.43.070174.004155. [DOI] [PubMed] [Google Scholar]
  10. Harvey W. R., Crawford D. N., Spaeth D. D. Isolation, voltage clamping, and flux measurements in lepidopteran midgut. Methods Enzymol. 1990;192:599–608. doi: 10.1016/0076-6879(90)92097-w. [DOI] [PubMed] [Google Scholar]
  11. Harvey W. R., Wolfersberger M. G. Mechanism of inhibition of active potassium transport in isolated midgut of Manduca sexta by Bacillus thuringiensis endotoxin. J Exp Biol. 1979 Dec;83:293–304. doi: 10.1242/jeb.83.1.293. [DOI] [PubMed] [Google Scholar]
  12. Hindley J., Berry C. Bacillus sphaericus strain 2297: nucleotide sequence of 41.9 kDa toxin gene. Nucleic Acids Res. 1988 May 11;16(9):4168–4168. doi: 10.1093/nar/16.9.4168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hofmann C., Lüthy P., Hütter R., Pliska V. Binding of the delta endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur J Biochem. 1988 Apr 5;173(1):85–91. doi: 10.1111/j.1432-1033.1988.tb13970.x. [DOI] [PubMed] [Google Scholar]
  14. Hofmann C., Vanderbruggen H., Höfte H., Van Rie J., Jansens S., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7844–7848. doi: 10.1073/pnas.85.21.7844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Höfte H., de Greve H., Seurinck J., Jansens S., Mahillon J., Ampe C., Vandekerckhove J., Vanderbruggen H., van Montagu M., Zabeau M. Structural and functional analysis of a cloned delta endotoxin of Bacillus thuringiensis berliner 1715. Eur J Biochem. 1986 Dec 1;161(2):273–280. doi: 10.1111/j.1432-1033.1986.tb10443.x. [DOI] [PubMed] [Google Scholar]
  17. Knowles B. H., Blatt M. R., Tester M., Horsnell J. M., Carroll J., Menestrina G., Ellar D. J. A cytolytic delta-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett. 1989 Feb 27;244(2):259–262. doi: 10.1016/0014-5793(89)80540-x. [DOI] [PubMed] [Google Scholar]
  18. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lee M. K., Milne R. E., Ge A. Z., Dean D. H. Location of a Bombyx mori receptor binding region on a Bacillus thuringiensis delta-endotoxin. J Biol Chem. 1992 Feb 15;267(5):3115–3121. [PubMed] [Google Scholar]
  21. Li J. D., Carroll J., Ellar D. J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature. 1991 Oct 31;353(6347):815–821. doi: 10.1038/353815a0. [DOI] [PubMed] [Google Scholar]
  22. McCormack K., Tanouye M. A., Iverson L. E., Lin J. W., Ramaswami M., McCormack T., Campanelli J. T., Mathew M. K., Rudy B. A role for hydrophobic residues in the voltage-dependent gating of Shaker K+ channels. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2931–2935. doi: 10.1073/pnas.88.7.2931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  24. Noda M., Shimizu S., Tanabe T., Takai T., Kayano T., Ikeda T., Takahashi H., Nakayama H., Kanaoka Y., Minamino N. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 1984 Nov 8;312(5990):121–127. doi: 10.1038/312121a0. [DOI] [PubMed] [Google Scholar]
  25. Papazian D. M., Timpe L. C., Jan Y. N., Jan L. Y. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature. 1991 Jan 24;349(6307):305–310. doi: 10.1038/349305a0. [DOI] [PubMed] [Google Scholar]
  26. Schwartz J. L., Garneau L., Masson L., Brousseau R. Early response of cultured lepidopteran cells to exposure to delta-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels. Biochim Biophys Acta. 1991 Jun 18;1065(2):250–260. doi: 10.1016/0005-2736(91)90237-3. [DOI] [PubMed] [Google Scholar]
  27. Slatin S. L., Abrams C. K., English L. Delta-endotoxins form cation-selective channels in planar lipid bilayers. Biochem Biophys Res Commun. 1990 Jun 15;169(2):765–772. doi: 10.1016/0006-291x(90)90397-6. [DOI] [PubMed] [Google Scholar]
  28. Stühmer W., Conti F., Suzuki H., Wang X. D., Noda M., Yahagi N., Kubo H., Numa S. Structural parts involved in activation and inactivation of the sodium channel. Nature. 1989 Jun 22;339(6226):597–603. doi: 10.1038/339597a0. [DOI] [PubMed] [Google Scholar]
  29. Tungpradubkul S., Settasatien C., Panyim S. The complete nucleotide sequence of a 130 kDa mosquito-larvicidal delta-endotoxin gene of Bacillus thuringiensis var. israelensis. Nucleic Acids Res. 1988 Feb 25;16(4):1637–1638. doi: 10.1093/nar/16.4.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl Environ Microbiol. 1990 May;56(5):1378–1385. doi: 10.1128/aem.56.5.1378-1385.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van Rie J., Jansens S., Höfte H., Degheele D., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur J Biochem. 1989 Dec 8;186(1-2):239–247. doi: 10.1111/j.1432-1033.1989.tb15201.x. [DOI] [PubMed] [Google Scholar]
  32. Wolfersberger M. G. The toxicity of two Bacillus thuringiensis delta-endotoxins to gypsy moth larvae is inversely related to the affinity of binding sites on midgut brush border membranes for the toxins. Experientia. 1990 May 15;46(5):475–477. doi: 10.1007/BF01954236. [DOI] [PubMed] [Google Scholar]
  33. Wolfersberger M. G. V-ATPase-energized epithelia and biological insect control. J Exp Biol. 1992 Nov;172:377–386. doi: 10.1242/jeb.172.1.377. [DOI] [PubMed] [Google Scholar]
  34. Wu D., Aronson A. I. Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J Biol Chem. 1992 Feb 5;267(4):2311–2317. [PubMed] [Google Scholar]
  35. Yamamoto T., Watkinson I. A., Kim L., Sage M. V., Stratton R., Akande N., Li Y., Ma D. P., Roe B. A. Nucleotide sequence of the gene coding for a 130-kDa mosquitocidal protein of Bacillus thuringiensis israelensis. Gene. 1988 Jun 15;66(1):107–120. doi: 10.1016/0378-1119(88)90229-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES