Skip to main content
Thorax logoLink to Thorax
. 1995 Oct;50(10):1097–1100. doi: 10.1136/thx.50.10.1097

Cardiopulmonary exercise testing following bilateral thoracoscopic sympathicolysis in patients with essential hyperhidrosis.

M Noppen 1, P Herregodts 1, P Dendale 1, J D'Haens 1, W Vincken 1
PMCID: PMC475025  PMID: 7491560

Abstract

BACKGROUND--Essential hyperhidrosis is characterised by an overactivity of the sympathetic fibres passing through the upper dorsal sympathetic ganglia D2-D3. Anatomical interruption at the D2-D3 level is a highly effective treatment for essential hyperhidrosis but also causes (partial) cardiac denervation and, after surgical sympathicolysis, important impairment of cardiopulmonary exercise function has been observed. The purpose of this study was to compare the results of cardiopulmonary exercise testing between patients with essential hyperhidrosis and a normal control population, and to examine the effects of thoracoscopic D2-D3 sympathicolysis on cardiopulmonary exercise capacity in patients with essential hyperhidrosis. METHODS--maximal, symptom limited incremental exercise tests were performed in 26 patients with severe essential hyperhidrosis one week before and one month after D2-D3 thoracoscopic sympathicolysis, and in 14 age and sex matched healthy volunteers. D2-D3 thoracoscopic sympathicolysis was performed using a simplified one stage bilateral procedure. RESULTS--Palmar hyperhidrosis was relieved in every patient, confirming the D2-D3 denervation. A higher peak heart rate (7%) was seen in the patient group than in the normal subjects, but ll other cardiovascular, metabolic, and respiratory parameters were similar. After D2-D3 thoracoscopic sympathicolysis, heart rate at rest (13%) and at peak exercise (7%) were reduced, together with an increase in oxygen pulse. All other parameters remained unchanged. CONCLUSIONS--Sympathetic overactivity relevant to cardiovascular function in essential hyperhidrosis is evident only during sympathetic stimulation. D2-D3 thoracoscopic sympathicolysis causes a small and asymptomatic reduction in maximal and resting heart rate and is not associated with a decrease in exercise capacity, in contrast with the detrimental effects on exercise capacity of open surgical sympathectomy.

Full text

PDF
1097

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adar R., Kurchin A., Zweig A., Mozes M. Palmar hyperhidrosis and its surgical treatment: a report of 100 cases. Ann Surg. 1977 Jul;186(1):34–41. doi: 10.1097/00000658-197707000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen K., Vik-Mo H. Role of the Frank-Starling mechanism during maximal semisupine exercise after oral atenolol. Br Heart J. 1982 Aug;48(2):149–155. doi: 10.1136/hrt.48.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byrne J., Walsh T. N., Hederman W. P. Endoscopic transthoracic electrocautery of the sympathetic chain for palmar and axillary hyperhidrosis. Br J Surg. 1990 Sep;77(9):1046–1049. doi: 10.1002/bjs.1800770931. [DOI] [PubMed] [Google Scholar]
  4. Cloward R. B. Hyperhydrosis. J Neurosurg. 1969 May;30(5):545–551. doi: 10.3171/jns.1969.30.5.0545. [DOI] [PubMed] [Google Scholar]
  5. Epstein S., Robinson B. F., Kahler R. L., Braunwald E. Effects of beta-adrenergic blockade on the cardiac response to maximal and submaximal exercise in man. J Clin Invest. 1965 Nov;44(11):1745–1753. doi: 10.1172/JCI105282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Firestone L. Autonomic influences on cardiac function: lessons from the transplanted (denervated) heart. Int Anesthesiol Clin. 1989 Winter;27(4):283–291. doi: 10.1097/00004311-198902740-00007. [DOI] [PubMed] [Google Scholar]
  7. Harris J. D., Jepson R. P. Essential hyperhidrosis. Med J Aust. 1971 Jul 17;2(3):135–138. [PubMed] [Google Scholar]
  8. Kadowaki M. H., Levett J. M. Sympathectomy in the treatment of angina and arrhythmias. Ann Thorac Surg. 1986 May;41(5):572–578. doi: 10.1016/s0003-4975(10)63050-0. [DOI] [PubMed] [Google Scholar]
  9. Lin C. C. Extended thoracoscopic T2-sympathectomy in treatment of hyperhidrosis: experience with 130 consecutive cases. J Laparoendosc Surg. 1992 Feb;2(1):1–6. doi: 10.1089/lps.1992.2.1. [DOI] [PubMed] [Google Scholar]
  10. Molho M., Kurchin A., Ohry A., Bass A., Adar R. Pulmonary functional abnormalities after upper dorsal sympathectomy. Am Rev Respir Dis. 1977 Nov;116(5):879–883. doi: 10.1164/arrd.1977.116.5.879. [DOI] [PubMed] [Google Scholar]
  11. Molho M., Shemesh E., Gordon D., Adar R. Pulmonary functional abnormalities after upper dorsal sympathectomy. A comparison between the supraclavicular and transaxillary approaches. Chest. 1980 May;77(5):651–655. doi: 10.1378/chest.77.5.651. [DOI] [PubMed] [Google Scholar]
  12. Papa M. Z., Bass A., Schneiderman J., Drori Y., Tucker E., Adar R. Cardiovascular changes after bilateral upper dorsal sympathectomy. Short- and long-term effects. Ann Surg. 1986 Dec;204(6):715–718. doi: 10.1097/00000658-198612000-00016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Petersen E. S., Whipp B. J., Davis J. A., Huntsman D. J., Brown H. V., Wasserman K. Effects of beta-adrenergic blockade on ventilation and gas exchange during exercise in humans. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1306–1313. doi: 10.1152/jappl.1983.54.5.1306. [DOI] [PubMed] [Google Scholar]
  14. SMITHWICK R. H., CHAPMAN E. M. The human heart rate; some observations and deductions based upon the effect of removing portions of the sympathetic nervous system in man. Surgery. 1949 Nov;26(5):727–744. [PubMed] [Google Scholar]
  15. Savin W. M., Davidson D. M., Haskell W. L. Autonomic contribution to heart rate recovery from exercise in humans. J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1572–1575. doi: 10.1152/jappl.1982.53.6.1572. [DOI] [PubMed] [Google Scholar]
  16. Shepherd J. T. Circulatory response to beta-adrenergic blockade at rest and during exercise. Am J Cardiol. 1985 Apr 26;55(10):87D–94D. doi: 10.1016/0002-9149(85)91061-6. [DOI] [PubMed] [Google Scholar]
  17. Shih C. J., Lin M. T. Effects of cholinomimetic drugs on sudomotor, metabolic, respiratory, vasomotor, and temperature response in palmar hyperhidrosis. J Neurosurg. 1980 Nov;53(5):684–689. doi: 10.3171/jns.1980.53.5.0684. [DOI] [PubMed] [Google Scholar]
  18. Shih C. J., Wu J. J., Lin M. T. Autonomic dysfunction in palmar hyperhidrosis. J Auton Nerv Syst. 1983 May;8(1):33–43. doi: 10.1016/0165-1838(83)90021-8. [DOI] [PubMed] [Google Scholar]
  19. Takeshima R., Dohi S. Circulatory responses to baroreflexes, Valsalva maneuver, coughing, swallowing, and nasal stimulation during acute cardiac sympathectomy by epidural blockade in awake humans. Anesthesiology. 1985 Nov;63(5):500–508. doi: 10.1097/00000542-198511000-00005. [DOI] [PubMed] [Google Scholar]
  20. Zeballos R. J., Weisman I. M. Behind the scenes of cardiopulmonary exercise testing. Clin Chest Med. 1994 Jun;15(2):193–213. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES