Abstract
BACKGROUND--Clinical tests of diaphragmatic strength are limited by the wide normal variation in maximal pressure which result, in part, from changes in diaphragmatic length. During relaxation at different lung volumes diaphragmatic length (LDI) can be estimated from the length of the zone of apposition (LZapp) and the transverse diameter of the rib cage (DRC). A study was carried out in two subjects using sequential digital radiography at six frames/second to determine whether these relations apply during maximal respiratory efforts which distort the rib cage and diaphragm. METHODS--The length of the anteroposterior contour of the diaphragm and DRC were determined by curve fitting. LZapp was measured with a millimetre rule. RESULTS--A significant correlation was found between LDI and LZapp during both maximal inspiratory and expulsive manoeuvres (R2 = 0.88 and 0.52). LDI was estimated from the measurements of LZapp and DRC using a multiple regression equation derived from measurements during static relaxation. Despite the complex dynamic events at the onset of these "static" manoeuvres, actual LDI correlated strongly with derived LDI using all data for the two manoeuvres in each subject (R2 = 0.95 and 0.84). Measurements with ultrasonography (12 cm linear probe) and magnetometers confirmed the changes in LZapp and DRC during inspiratory and expulsive efforts. CONCLUSIONS--Non-invasive measurements of LZapp and DRC can be used to derive an accurate estimate of diaphragmatic length under dynamic conditions.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agostoni E., Mognoni P. Deformation of the chest wall during breathing efforts. J Appl Physiol. 1966 Nov;21(6):1827–1832. doi: 10.1152/jappl.1966.21.6.1827. [DOI] [PubMed] [Google Scholar]
- Braun N. M., Arora N. S., Rochester D. F. Force-length relationship of the normal human diaphragm. J Appl Physiol Respir Environ Exerc Physiol. 1982 Aug;53(2):405–412. doi: 10.1152/jappl.1982.53.2.405. [DOI] [PubMed] [Google Scholar]
- Edman K. A., Elzinga G., Noble M. I. Enhancement of mechanical performance by stretch during tetanic contractions of vertebrate skeletal muscle fibres. J Physiol. 1978 Aug;281:139–155. doi: 10.1113/jphysiol.1978.sp012413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandevia S. C., Gorman R. B., McKenzie D. K., Southon F. C. Dynamic changes in human diaphragm length: maximal inspiratory and expulsive efforts studied with sequential radiography. J Physiol. 1992 Nov;457:167–176. doi: 10.1113/jphysiol.1992.sp019370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandevia S. C., McKenzie D. K., Plassman B. L. Activation of human respiratory muscles during different voluntary manoeuvres. J Physiol. 1990 Sep;428:387–403. doi: 10.1113/jphysiol.1990.sp018218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths R. I. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol. 1991 May;436:219–236. doi: 10.1113/jphysiol.1991.sp018547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillman D. R., Markos J., Finucane K. E. Effect of abdominal compression on maximum transdiaphragmatic pressure. J Appl Physiol (1985) 1990 Jun;68(6):2296–2304. doi: 10.1152/jappl.1990.68.6.2296. [DOI] [PubMed] [Google Scholar]
- Hubmayr R. D., Sprung J., Nelson S. Determinants of transdiaphragmatic pressure in dogs. J Appl Physiol (1985) 1990 Dec;69(6):2050–2056. doi: 10.1152/jappl.1990.69.6.2050. [DOI] [PubMed] [Google Scholar]
- Joyce G. C., Rack P. M., Westbury D. R. The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements. J Physiol. 1969 Oct;204(2):461–474. doi: 10.1113/jphysiol.1969.sp008924. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katz B. The relation between force and speed in muscular contraction. J Physiol. 1939 Jun 14;96(1):45–64. doi: 10.1113/jphysiol.1939.sp003756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight H., Petroll W. M., Adams J. M., Shaffer H. A., Rochester D. F. Videofluoroscopic assessment of muscle fiber shortening in the in situ canine diaphragm. J Appl Physiol (1985) 1990 May;68(5):2200–2207. doi: 10.1152/jappl.1990.68.5.2200. [DOI] [PubMed] [Google Scholar]
- Laporta D., Grassino A. Assessment of transdiaphragmatic pressure in humans. J Appl Physiol (1985) 1985 May;58(5):1469–1476. doi: 10.1152/jappl.1985.58.5.1469. [DOI] [PubMed] [Google Scholar]
- Loring S. H., Mead J., Griscom N. T. Dependence of diaphragmatic length on lung volume and thoracoabdominal configuration. J Appl Physiol (1985) 1985 Dec;59(6):1961–1970. doi: 10.1152/jappl.1985.59.6.1961. [DOI] [PubMed] [Google Scholar]
- Mead J., Loring S. H. Analysis of volume displacement and length changes of the diaphragm during breathing. J Appl Physiol Respir Environ Exerc Physiol. 1982 Sep;53(3):750–755. doi: 10.1152/jappl.1982.53.3.750. [DOI] [PubMed] [Google Scholar]
- Petroll W. M., Knight H., Rochester D. F. Effect of lower rib cage expansion and diaphragm shortening on the zone of apposition. J Appl Physiol (1985) 1990 Feb;68(2):484–488. doi: 10.1152/jappl.1990.68.2.484. [DOI] [PubMed] [Google Scholar]
- Rochester D. F., Arora N. S., Braun N. M. Maximum contractile force of human diaphragm muscle, determined in vivo. Trans Am Clin Climatol Assoc. 1982;93:200–208. [PMC free article] [PubMed] [Google Scholar]
- Saunders N. A., Kreitzer S. M., Ingram R. H., Jr Rib cage deformation during static inspiratory efforts. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jun;46(6):1071–1075. doi: 10.1152/jappl.1979.46.6.1071. [DOI] [PubMed] [Google Scholar]
- Sprung J., Deschamps C., Hubmayr R. D., Walters B. J., Rodarte J. R. In vivo regional diaphragm function in dogs. J Appl Physiol (1985) 1989 Aug;67(2):655–662. doi: 10.1152/jappl.1989.67.2.655. [DOI] [PubMed] [Google Scholar]
