Abstract
BACKGROUND--Frusemide can inhibit various indirectly acting bronchoconstrictor stimuli in asthmatic patients. Both frusemide and bumetanide also modulate airway neurotransmission in some species but there are no data on the effect of loop diuretics on neurotransmission in man. An in vitro study was performed in human airways to investigate the possible neuromodulatory action of two loop diuretics, frusemide and bumetanide, and to elucidate whether a cyclooxygenase inhibitor such as indomethacin could modulate the effect of frusemide. The effect of acetazolamide, a carbonic anhydrase inhibitor, was also investigated. METHODS--Electrical field stimulation (EFS; 40 V, 0.5 ms, 0.5-32 Hz for 15 seconds) in human airways with or without epithelium was used to induce a cholinergic contraction (n = 5 in all experiments). Indomethacin was present throughout. After obtaining a control frequency-response curve, different concentrations of diuretic were added to the organ bath and another frequency-response curve was constructed. To determine whether the effect of the diuretic was prejunctional or postjunctional a cumulative concentration-response curve to exogenous acetylcholine (Ach, 0.3 mumol/l to 10 mmol/l) was constructed in the presence of a diuretic (frusemide 1 mmol/l or bumetanide 0.1 mmol/l) or its vehicle. In some experiments indomethacin was omitted from the organ bath to investigate the possible involvement of cyclooxygenase products. RESULTS--Both frusemide (10 mumol/l to 1 mmol/l) and bumetanide (1 mumol/l to 0.1 mmol/l) produced a concentration-dependent inhibition of the EFS-induced cholinergic contraction in human airways in vitro but only in epithelium denuded tissues. Frusemide (1 mmol/l) produced a maximum inhibition of 46.3% (SE 9.9%) at 0.5 Hz and bumetanide (0.1 mmol/l 39.6 (6.2)% at 0.5 Hz. Without indomethacin in the organ bath the frusemide-induced inhibition was enhanced at 4, 8, and 16 Hz, but bumetanide-induced inhibition was not enhanced at any frequency when indomethacin was omitted. Frusemide (1 mmol/l) and bumetanide (0.1 mmol/l) had no effect on the cumulative concentration-response curve to exogenous Ach (0.3 mumol/l to 10 mmol/l). Acetazolamide (100 mumol/l) had no effect on the EFS-induced cholinergic contraction in tissues with or without epithelium. CONCLUSIONS--In human airways in vitro both frusemide and bumetanide produced a concentration-dependent inhibition of the EFS-induced cholinergic contraction. This inhibition is mediated through a prejunctional mechanism. Epithelium removal was necessary to achieve this effect. The mechanism of action of frusemide and bumetanide on airway nerves remains unclear: inhibition of the Na-K-Cl cotransporter is a possibility and, for frusemide, release of endogenous cyclooxygenase products may be involved. Carbonic anhydrase inhibition, on the other hand, is unlikely to be a factor.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S. D., He W., Temple D. M. Inhibition by furosemide of inflammatory mediators from lung fragments. N Engl J Med. 1991 Jan 10;324(2):131–131. doi: 10.1056/NEJM199101103240218. [DOI] [PubMed] [Google Scholar]
- Anderson S. D., He W., Temple D. M. Inhibition by furosemide of inflammatory mediators from lung fragments. N Engl J Med. 1991 Jan 10;324(2):131–131. doi: 10.1056/NEJM199101103240218. [DOI] [PubMed] [Google Scholar]
- Barnes P. J. Diuretics and asthma. Thorax. 1993 Mar;48(3):195–196. doi: 10.1136/thx.48.3.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belvisi M. G., Stretton C. D., Verleden G. M., Ledingham S. J., Yacoub M. H., Barnes P. J. Inhibition of cholinergic neurotransmission in human airways by opioids. J Appl Physiol (1985) 1992 Mar;72(3):1096–1100. doi: 10.1152/jappl.1992.72.3.1096. [DOI] [PubMed] [Google Scholar]
- Berti F., Rossoni G., Zuccari G., Buschi A., Robuschi M., Villa L. M., Caratozzolo O. Protective activity of inhaled frusemide against immunological respiratory changes and mediator release in guinea-pigs. Pulm Pharmacol. 1992 Jun;5(2):115–120. doi: 10.1016/0952-0600(92)90028-f. [DOI] [PubMed] [Google Scholar]
- Bianco S., Pieroni M. G., Refini R. M., Robuschi M., Vaghi A., Sestini P. Inhaled loop diuretics as potential new anti-asthmatic drugs. Eur Respir J. 1993 Jan;6(1):130–134. [PubMed] [Google Scholar]
- Bianco S., Pieroni M. G., Refini R. M., Rottoli L., Sestini P. Protective effect of inhaled furosemide on allergen-induced early and late asthmatic reactions. N Engl J Med. 1989 Oct 19;321(16):1069–1073. doi: 10.1056/NEJM198910193211602. [DOI] [PubMed] [Google Scholar]
- Bianco S., Vaghi A., Robuschi M., Pasargiklian M. Prevention of exercise-induced bronchoconstriction by inhaled frusemide. Lancet. 1988 Jul 30;2(8605):252–255. doi: 10.1016/s0140-6736(88)92540-8. [DOI] [PubMed] [Google Scholar]
- Chung K. F., Barnes P. J. Loop diuretics and asthma. Pulm Pharmacol. 1992;5(1):1–7. doi: 10.1016/0952-0600(92)90011-5. [DOI] [PubMed] [Google Scholar]
- Elwood W., Lötvall J. O., Barnes P. J., Chung K. F. Loop diuretics inhibit cholinergic and noncholinergic nerves in guinea pig airways. Am Rev Respir Dis. 1991 Jun;143(6):1340–1344. doi: 10.1164/ajrccm/143.6.1340. [DOI] [PubMed] [Google Scholar]
- Flavahan N. A., Aarhus L. L., Rimele T. J., Vanhoutte P. M. Respiratory epithelium inhibits bronchial smooth muscle tone. J Appl Physiol (1985) 1985 Mar;58(3):834–838. doi: 10.1152/jappl.1985.58.3.834. [DOI] [PubMed] [Google Scholar]
- Foresi A., Pelucchi A., Mastropasqua B., Cavigioli G., Carlesi R. M., Marazzini L. Effect of inhaled furosemide and torasemide on bronchial response to ultrasonically nebulized distilled water in asthmatic subjects. Am Rev Respir Dis. 1992 Aug;146(2):364–368. doi: 10.1164/ajrccm/146.2.364. [DOI] [PubMed] [Google Scholar]
- Gerkens J. F. Inhibitory effect of frusemide on sympathetic vasoconstrictor responses: dependence on a renal hormone and the vascular endothelium. Clin Exp Pharmacol Physiol. 1987 May;14(5):371–377. doi: 10.1111/j.1440-1681.1987.tb00986.x. [DOI] [PubMed] [Google Scholar]
- Grubbe R. E., Hopp R., Dave N. K., Brennan B., Bewtra A., Townley R. Effect of inhaled furosemide on the bronchial response to methacholine and cold-air hyperventilation challenges. J Allergy Clin Immunol. 1990 May;85(5):881–884. doi: 10.1016/0091-6749(90)90072-c. [DOI] [PubMed] [Google Scholar]
- Holroyde M. C. The influence of epithelium on the responsiveness of guinea-pig isolated trachea. Br J Pharmacol. 1986 Mar;87(3):501–507. doi: 10.1111/j.1476-5381.1986.tb10192.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson D. M., Pollard C. E., Roberts S. M. The effect of nedocromil sodium on the isolated rabbit vagus nerve. Eur J Pharmacol. 1992 Oct 6;221(1):175–177. doi: 10.1016/0014-2999(92)90790-b. [DOI] [PubMed] [Google Scholar]
- Jackson D. M., Pollard C. E., Roberts S. M. The effect of nedocromil sodium on the isolated rabbit vagus nerve. Eur J Pharmacol. 1992 Oct 6;221(1):175–177. doi: 10.1016/0014-2999(92)90790-b. [DOI] [PubMed] [Google Scholar]
- Knox A. J., Ajao P. Effect of frusemide on airway smooth muscle contractility in vitro. Thorax. 1990 Nov;45(11):856–859. doi: 10.1136/thx.45.11.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laitinen A. Ultrastructural organisation of intraepithelial nerves in the human airway tract. Thorax. 1985 Jul;40(7):488–492. doi: 10.1136/thx.40.7.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laitinen L. A., Heino M., Laitinen A., Kava T., Haahtela T. Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis. 1985 Apr;131(4):599–606. doi: 10.1164/arrd.1985.131.4.599. [DOI] [PubMed] [Google Scholar]
- Lant A. Diuretics. Clinical pharmacology and therapeutic use (Part I). Drugs. 1985 Jan;29(1):57–87. doi: 10.2165/00003495-198529010-00003. [DOI] [PubMed] [Google Scholar]
- Lant A. Diuretics. Clinical pharmacology and therapeutic use (Part I). Drugs. 1985 Jan;29(1):57–87. doi: 10.2165/00003495-198529010-00003. [DOI] [PubMed] [Google Scholar]
- Molimard M., Advenier C. Effect of frusemide on bradykinin- and capsaicin-induced contraction of the guinea-pig trachea. Eur Respir J. 1993 Mar;6(3):434–439. [PubMed] [Google Scholar]
- Mullol J., Ramis I., Prat J., Roselló-Catafau J., Xaubet A., Piera C., Gelpí E., Picado C. Failure of frusemide to increase production of prostaglandin E2 in human nasal mucosa in vivo. Thorax. 1993 Mar;48(3):260–263. doi: 10.1136/thx.48.3.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nichol G. M., Alton E. W., Nix A., Geddes D. M., Chung K. F., Barnes P. J. Effect of inhaled furosemide on metabisulfite- and methacholine-induced bronchoconstriction and nasal potential difference in asthmatic subjects. Am Rev Respir Dis. 1990 Sep;142(3):576–580. doi: 10.1164/ajrccm/142.3.576. [DOI] [PubMed] [Google Scholar]
- O'Connor B. J., Barnes P. J., Chung K. F. Inhibition of sodium metabisulphite induced bronchoconstriction by frusemide in asthma: role of cyclooxygenase products. Thorax. 1994 Apr;49(4):307–311. doi: 10.1136/thx.49.4.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connor B. J., Chung K. F., Chen-Worsdell Y. M., Fuller R. W., Barnes P. J. Effect of inhaled furosemide and bumetanide on adenosine 5'-monophosphate- and sodium metabisulfite-induced bronchoconstriction in asthmatic subjects. Am Rev Respir Dis. 1991 Jun;143(6):1329–1333. doi: 10.1164/ajrccm/143.6.1329. [DOI] [PubMed] [Google Scholar]
- O'Grady S. M., Palfrey H. C., Field M. Na-K-2Cl cotransport in winter flounder intestine and bovine kidney outer medulla: [3H] bumetanide binding and effects of furosemide analogues. J Membr Biol. 1987;96(1):11–18. doi: 10.1007/BF01869330. [DOI] [PubMed] [Google Scholar]
- Passmore A. P., Whitehead E. M., Johnston G. D. Comparison of the acute renal and peripheral vascular responses to frusemide and bumetanide at low and high dose. Br J Clin Pharmacol. 1989 Mar;27(3):305–312. doi: 10.1111/j.1365-2125.1989.tb05370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polosa R., Lau L. C., Holgate S. T. Inhibition of adenosine 5'-monophosphate- and methacholine-induced bronchoconstriction in asthma by inhaled frusemide. Eur Respir J. 1990 Jun;3(6):665–672. [PubMed] [Google Scholar]
- Reinsprecht M., Pecht I., Schindler H., Romanin C. Potent block of Cl- channels by antiallergic drugs. Biochem Biophys Res Commun. 1992 Nov 16;188(3):957–963. doi: 10.1016/0006-291x(92)91325-k. [DOI] [PubMed] [Google Scholar]
- Reinsprecht M., Pecht I., Schindler H., Romanin C. Potent block of Cl- channels by antiallergic drugs. Biochem Biophys Res Commun. 1992 Nov 16;188(3):957–963. doi: 10.1016/0006-291x(92)91325-k. [DOI] [PubMed] [Google Scholar]
- Robuschi M., Gambaro G., Spagnotto S., Vaghi A., Bianco S. Inhaled frusemide is highly effective in preventing ultrasonically nebulised water bronchoconstriction. Pulm Pharmacol. 1989;1(4):187–191. doi: 10.1016/s0952-0600(89)80016-x. [DOI] [PubMed] [Google Scholar]
- Rodwell L. T., Anderson S. D., du Toit J. I., Seale J. P. The effect of inhaled frusemide on airway sensitivity to inhaled 4.5% sodium chloride aerosol in asthmatic subjects. Thorax. 1993 Mar;48(3):208–213. doi: 10.1136/thx.48.3.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone K. J., Hart M. Inhibition of renal PGE2-9-ketoreductase by diuretics. Prostaglandins. 1976 Aug;12(2):197–207. doi: 10.1016/0090-6980(76)90115-5. [DOI] [PubMed] [Google Scholar]
- Vanhoutte P. M. Epithelium-derived relaxing factor(s) and bronchial reactivity. Am Rev Respir Dis. 1988 Dec;138(6 Pt 2):S24–S30. doi: 10.1164/ajrccm/138.6_Pt_2.S24. [DOI] [PubMed] [Google Scholar]
- Ward A., Heel R. C. Bumetanide. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use. Drugs. 1984 Nov;28(5):426–464. doi: 10.2165/00003495-198428050-00003. [DOI] [PubMed] [Google Scholar]
- Yu M., Wang Z., Robinson N. E., Derksen F. J. The inhibitory effect of furosemide on the contractile response of equine trachealis to cholinergic nerve stimulation. Pulm Pharmacol. 1992 Dec;5(4):233–238. doi: 10.1016/0952-0600(92)90065-o. [DOI] [PubMed] [Google Scholar]
