Abstract
BACKGROUND--Suitable models for the study of lung development are needed. The suitability of the guinea pig for studying the role of the beta adrenergic response cascade in fetal lung development has been evaluated. METHODS--Radioligand binding assays with iodine-125 labelled iodopindolol were performed to identify and characterise the beta adrenergic receptors. To demonstrate that these receptors were functional, isoprenaline and forskolin stimulated generation of cyclic AMP (cAMP) in the lung tissue was quantitated by radioimmunoassay. RESULTS--The concentration of beta receptors increased with gestational age from 23 fmol/mg at 35 days to 140 fmol/mg at 64 days. Competition binding studies were consistent with a predominance of beta 2 receptors. The ability of isoprenaline to stimulate cAMP generation was greater during the saccular phase than during the canalicular phase of lung development. Incorporation of tritium labelled choline into phosphatidylcholine increased significantly between the canalicular and saccular phases. CONCLUSIONS--The beta adrenergic response cascade in fetal guinea pig lung exhibits similar characteristics to those previously described in fetal human lung and is therefore a good model in which to study the effects of beta agonists on fetal lung development.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brown L. A., Longmore W. J. Adrenergic and cholinergic regulation of lung surfactant secretion in the isolated perfused rat lung and in the alveolar type II cell in culture. J Biol Chem. 1981 Jan 10;256(1):66–72. [PubMed] [Google Scholar]
- Collins M. H., Kleinerman J., Moessinger A. C., Collins A. H., James L. S., Blanc W. A. Morphometric analysis of the growth of the normal fetal guinea pig lung. Anat Rec. 1986 Nov;216(3):381–391. doi: 10.1002/ar.1092160307. [DOI] [PubMed] [Google Scholar]
- Das S. K., Sikpi M. O., Skolnick P. Heterogeneity of beta-adrenoreceptors in guinea pig alveolar type II cells. Biochem Biophys Res Commun. 1987 Feb 13;142(3):898–903. doi: 10.1016/0006-291x(87)91498-7. [DOI] [PubMed] [Google Scholar]
- Davis D. J., Dattel B. J., Ballard P. L., Roberts J. M. Beta-adrenergic receptors and cyclic adenosine monophosphate generation in human fetal lung. Pediatr Res. 1987 Feb;21(2):142–147. doi: 10.1203/00006450-198702000-00007. [DOI] [PubMed] [Google Scholar]
- Davis D. J., Jacobs M. M., Ballard P. L., Gonzales L. K., Roberts J. M. Beta-adrenergic receptors and cAMP response increase during explant culture of human fetal lung: partial inhibition by dexamethasone. Pediatr Res. 1990 Sep;28(3):190–195. doi: 10.1203/00006450-199009000-00003. [DOI] [PubMed] [Google Scholar]
- Dobbs L. G., Mason R. J. Pulmonary alveolar type II cells isolated from rats. Release of phosphatidylcholine in response to beta-adrenergic stimulation. J Clin Invest. 1979 Mar;63(3):378–387. doi: 10.1172/JCI109313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engel G. Subclasses of beta-adrenoceptors--a quantitative estimation of beta 1- and beta 2- adrenoceptors in guinea pig and human lung. Postgrad Med J. 1981;57 (Suppl 1):77–83. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Falkay G., Németh G., Kovács L. Binding properties of beta-adrenergic receptors in early human fetal lung. Biochem Biophys Res Commun. 1986 Mar 28;135(3):816–822. doi: 10.1016/0006-291x(86)91001-6. [DOI] [PubMed] [Google Scholar]
- Fisher A. B., Arad I., Dodia C., Chander A., Feinstein S. I. cAMP increases synthesis of surfactant-associated protein A by perfused rat lung. Am J Physiol. 1991 Apr;260(4 Pt 1):L226–L233. doi: 10.1152/ajplung.1991.260.4.L226. [DOI] [PubMed] [Google Scholar]
- Gatto C., Johnson M. G., Seybold V., Kulik T. J., Lock J. E., Johnson D. E. Distribution and quantitative developmental changes in guinea pig pulmonary beta-receptors. J Appl Physiol Respir Environ Exerc Physiol. 1984 Dec;57(6):1901–1907. doi: 10.1152/jappl.1984.57.6.1901. [DOI] [PubMed] [Google Scholar]
- Langston C., Kida K., Reed M., Thurlbeck W. M. Human lung growth in late gestation and in the neonate. Am Rev Respir Dis. 1984 Apr;129(4):607–613. [PubMed] [Google Scholar]
- Lechner A. J., Banchero N. Advanced pulmonary development in newborn guinea pigs (Cavia porcellus). Am J Anat. 1982 Mar;163(3):235–246. doi: 10.1002/aja.1001630304. [DOI] [PubMed] [Google Scholar]
- McDonald J. V., Jr, Gonzales L. W., Ballard P. L., Pitha J., Roberts J. M. Lung beta-adrenoreceptor blockade affects perinatal surfactant release but not lung water. J Appl Physiol (1985) 1986 May;60(5):1727–1733. doi: 10.1152/jappl.1986.60.5.1727. [DOI] [PubMed] [Google Scholar]
- Mettler N. R., Gray M. E., Schuffman S., LeQuire V. S. beta-Adrenergic induced synthesis and secretion of phosphatidylcholine by isolated pulmonary alveolar type II cells. Lab Invest. 1981 Dec;45(6):575–586. [PubMed] [Google Scholar]
- Odom M. J., Snyder J. M., Mendelson C. R. Adenosine 3',5'-monophosphate analogs and beta-adrenergic agonists induce the synthesis of the major surfactant apoprotein in human fetal lung in vitro. Endocrinology. 1987 Sep;121(3):1155–1163. doi: 10.1210/endo-121-3-1155. [DOI] [PubMed] [Google Scholar]
- Pringle K. C. Human fetal lung development and related animal models. Clin Obstet Gynecol. 1986 Sep;29(3):502–513. [PubMed] [Google Scholar]
- Snyder J. M., Mendelson C. R., Johnston J. M. The effect of cortisol on rabbit fetal lung maturation in vitro. Dev Biol. 1981 Jul 15;85(1):129–140. doi: 10.1016/0012-1606(81)90242-6. [DOI] [PubMed] [Google Scholar]
- Sosenko I. R., Frank L. Guinea pig lung development: antioxidant enzymes and premature survival in high O2. Am J Physiol. 1987 Apr;252(4 Pt 2):R693–R698. doi: 10.1152/ajpregu.1987.252.4.R693. [DOI] [PubMed] [Google Scholar]
- Sosenko I. R., Frank L. Lung development in the fetal guinea pig: surfactant, morphology, and premature viability. Pediatr Res. 1987 May;21(5):427–431. doi: 10.1203/00006450-198705000-00001. [DOI] [PubMed] [Google Scholar]
- Whitsett J. A., Manton M. A., Darovec-Beckerman C., Adams K. G., Moore J. J. beta-Adrenergic receptors in the developing rabbit lung. Am J Physiol. 1981 Apr;240(4):E351–E357. doi: 10.1152/ajpendo.1981.240.4.E351. [DOI] [PubMed] [Google Scholar]
- Whitsett J. A., Manton M. A., Darovec-Beckerman C., Adams K. II. Beta-adrenergic receptors and catecholamine sensitive adenylate cyclase in the developing rat lung. Life Sci. 1981 Jan 26;28(4):339–345. doi: 10.1016/0024-3205(81)90077-1. [DOI] [PubMed] [Google Scholar]
