Skip to main content
Thorax logoLink to Thorax
. 1994 Aug;49(8):815–824. doi: 10.1136/thx.49.8.815

Contribution of multiple inert gas elimination technique to pulmonary medicine. 1. Principles and information content of the multiple inert gas elimination technique.

J Roca 1, P D Wagner 1
PMCID: PMC475132  PMID: 8091330

Abstract

This introductory review summarises four different aspects of the multiple inert gas elimination technique (MIGET). Firstly, the historical background that facilitated, in the mid 1970s, the development of the MIGET as a tool to obtain more information about the entire spectrum of VA/Q distribution in the lung by measuring the exchange of six gases of different solubility in trace concentrations. Its principle is based on the observation that the retention (or excretion) of any gas is dependent on the solubility (lambda) of that gas and the VA/Q distribution. A second major aspect is the analysis of the information content and limitations of the technique. During the last 15 years a substantial amount of clinical research using the MIGET has been generated by several groups around the world. The technique has been shown to be adequate in understanding the mechanisms of hypoxaemia in different forms of pulmonary disease and the effects of therapeutic interventions, but also in separately determining the quantitative role of each extrapulmonary factor on systemic arterial PO2 when they change between two conditions of MIGET measurement. This information will be extensively reviewed in the forthcoming articles of this series. Next, the different modalities of the MIGET, practical considerations involved in the measurements and the guidelines for quality control have been indicated. Finally, a section has been devoted to the analysis of available data in healthy subjects under different conditions. The lack of systematic information on the VA/Q distributions of older healthy subjects is emphasised, since it will be required to fully understand the changes brought about by diseases that affect the older population.

Full text

PDF
815

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agustí A. G., Roca J., Gea J., Wagner P. D., Xaubet A., Rodriguez-Roisin R. Mechanisms of gas-exchange impairment in idiopathic pulmonary fibrosis. Am Rev Respir Dis. 1991 Feb;143(2):219–225. doi: 10.1164/ajrccm/143.2.219. [DOI] [PubMed] [Google Scholar]
  2. Bebout D. E., Story D., Roca J., Hogan M. C., Poole D. C., Gonzalez-Camarena R., Ueno O., Haab P., Wagner P. D. Effects of altitude acclimatization on pulmonary gas exchange during exercise. J Appl Physiol (1985) 1989 Dec;67(6):2286–2295. doi: 10.1152/jappl.1989.67.6.2286. [DOI] [PubMed] [Google Scholar]
  3. D'Angelo E. Effects of single breath lung inflation on the pattern of subsequent breaths. Respir Physiol. 1977 Sep;31(1):1–18. doi: 10.1016/0034-5687(77)90061-5. [DOI] [PubMed] [Google Scholar]
  4. Dempsey J. A., Hanson P. G., Henderson K. S. Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol. 1984 Oct;355:161–175. doi: 10.1113/jphysiol.1984.sp015412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Derks C. M. Ventilation-perfusion distribution in young and old volunteers during mild exercise. Bull Eur Physiopathol Respir. 1980;16(2):145–154. [PubMed] [Google Scholar]
  6. Evans J. W., Wagner P. D. Limits on VA/Q distributions from analysis of experimental inert gas elimination. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jun;42(6):889–898. doi: 10.1152/jappl.1977.42.6.889. [DOI] [PubMed] [Google Scholar]
  7. Farhi L. E. Elimination of inert gas by the lung. Respir Physiol. 1967 Aug;3(1):1–11. doi: 10.1016/0034-5687(67)90018-7. [DOI] [PubMed] [Google Scholar]
  8. Fortune J. B., Wagner P. D. Effects of common dead space on inert gas exchange in mathematical models of the lung. J Appl Physiol Respir Environ Exerc Physiol. 1979 Oct;47(4):896–906. doi: 10.1152/jappl.1979.47.4.896. [DOI] [PubMed] [Google Scholar]
  9. GOMEZ D. M., BRISCOE W. A., CUMMING G. CONTINUOUS DISTRIBUTION OF SPECIFIC TIDAL VOLUME THROUGHOUT THE LUNG. J Appl Physiol. 1964 Jul;19:683–692. doi: 10.1152/jappl.1964.19.4.683. [DOI] [PubMed] [Google Scholar]
  10. Gale G. E., Torre-Bueno J. R., Moon R. E., Saltzman H. A., Wagner P. D. Ventilation-perfusion inequality in normal humans during exercise at sea level and simulated altitude. J Appl Physiol (1985) 1985 Mar;58(3):978–988. doi: 10.1152/jappl.1985.58.3.978. [DOI] [PubMed] [Google Scholar]
  11. Gale G. E., Torre-Bueno J. R., Moon R. E., Saltzman H. A., Wagner P. D. Ventilation-perfusion inequality in normal humans during exercise at sea level and simulated altitude. J Appl Physiol (1985) 1985 Mar;58(3):978–988. doi: 10.1152/jappl.1985.58.3.978. [DOI] [PubMed] [Google Scholar]
  12. Gea J., Roca J., Torres A., Agustí A. G., Wagner P. D., Rodriguez-Roisin R. Mechanisms of abnormal gas exchange in patients with pneumonia. Anesthesiology. 1991 Nov;75(5):782–789. doi: 10.1097/00000542-199111000-00009. [DOI] [PubMed] [Google Scholar]
  13. Hammond M. D., Gale G. E., Kapitan K. S., Ries A., Wagner P. D. Pulmonary gas exchange in humans during exercise at sea level. J Appl Physiol (1985) 1986 May;60(5):1590–1598. doi: 10.1152/jappl.1986.60.5.1590. [DOI] [PubMed] [Google Scholar]
  14. Hlastala M. P., Robertson H. T. Inert gas elimination characteristics of the normal and abnormal lung. J Appl Physiol Respir Environ Exerc Physiol. 1978 Feb;44(2):258–266. doi: 10.1152/jappl.1978.44.2.258. [DOI] [PubMed] [Google Scholar]
  15. KETY S. S. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev. 1951 Mar;3(1):1–41. [PubMed] [Google Scholar]
  16. Kapitan K. S., Wagner P. D. Linear programming analysis of VA/Q distributions: average distribution. J Appl Physiol (1985) 1987 Apr;62(4):1356–1362. doi: 10.1152/jappl.1987.62.4.1356. [DOI] [PubMed] [Google Scholar]
  17. Kapitan K. S., Wagner P. D. Linear programming analysis of VA/Q distributions: limits on central moments. J Appl Physiol (1985) 1986 May;60(5):1772–1781. doi: 10.1152/jappl.1986.60.5.1772. [DOI] [PubMed] [Google Scholar]
  18. Kelman G. R. Digital computer procedure for the conversion of PCO2 into blood CO2 content. Respir Physiol. 1967 Aug;3(1):111–115. doi: 10.1016/0034-5687(67)90028-x. [DOI] [PubMed] [Google Scholar]
  19. Kelman G. R. Digital computer subroutine for the conversion of oxygen tension into saturation. J Appl Physiol. 1966 Jul;21(4):1375–1376. doi: 10.1152/jappl.1966.21.4.1375. [DOI] [PubMed] [Google Scholar]
  20. Krogh A., Lindhard J. The volume of the dead space in breathing and the mixing of gases in the lungs of man. J Physiol. 1917 Mar 20;51(1-2):59–90. doi: 10.1113/jphysiol.1917.sp001785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Longworth K. E., Jones J. H., Bicudo J. E., Taylor C. R., Weibel E. R. High rate of O2 consumption in exercising foxes: large PO2 difference drives diffusion across the lung. Respir Physiol. 1989 Sep;77(3):263–276. doi: 10.1016/0034-5687(89)90115-1. [DOI] [PubMed] [Google Scholar]
  22. Olszowka A. J., Farhi L. E. A system of digital computer subroutines for blood gas calculations. Respir Physiol. 1968 Mar;4(2):270–280. doi: 10.1016/0034-5687(68)90058-3. [DOI] [PubMed] [Google Scholar]
  23. Powell F. L., Wagner P. D. Measurement of continuous distributions of ventilation-perfusion in non-alveolar lungs. Respir Physiol. 1982 May;48(2):219–232. doi: 10.1016/0034-5687(82)90082-2. [DOI] [PubMed] [Google Scholar]
  24. Powell F. L., Wagner P. D. Ventilation-perfusion inequally in avian lungs. Respir Physiol. 1982 May;48(2):233–241. doi: 10.1016/0034-5687(82)90083-4. [DOI] [PubMed] [Google Scholar]
  25. Rodriguez-Roisin R., Ballester E., Roca J., Torres A., Wagner P. D. Mechanisms of hypoxemia in patients with status asthmaticus requiring mechanical ventilation. Am Rev Respir Dis. 1989 Mar;139(3):732–739. doi: 10.1164/ajrccm/139.3.732. [DOI] [PubMed] [Google Scholar]
  26. Torre-Bueno J. R., Wagner P. D., Saltzman H. A., Gale G. E., Moon R. E. Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J Appl Physiol (1985) 1985 Mar;58(3):989–995. doi: 10.1152/jappl.1985.58.3.989. [DOI] [PubMed] [Google Scholar]
  27. Truog W. E., Hlastala M. P., Standaert T. A., McKenna H. P., Hodson W. A. Oxygen-induced alteration of ventilation-perfusion relationships in rats. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):1112–1117. doi: 10.1152/jappl.1979.47.5.1112. [DOI] [PubMed] [Google Scholar]
  28. Wagner P. D. Calculating the distribution of ventilation-perfusion ratios from inert gas elimination data. Fed Proc. 1982 Jan;41(1):136–139. [PubMed] [Google Scholar]
  29. Wagner P. D. Diffusion and chemical reaction in pulmonary gas exchange. Physiol Rev. 1977 Apr;57(2):257–312. doi: 10.1152/physrev.1977.57.2.257. [DOI] [PubMed] [Google Scholar]
  30. Wagner P. D., Gale G. E., Moon R. E., Torre-Bueno J. R., Stolp B. W., Saltzman H. A. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol (1985) 1986 Jul;61(1):260–270. doi: 10.1152/jappl.1986.61.1.260. [DOI] [PubMed] [Google Scholar]
  31. Wagner P. D., Hedenstierna G., Bylin G., Lagerstrand L. Reproducibility of the multiple inert gas elimination technique. J Appl Physiol (1985) 1987 Apr;62(4):1740–1746. doi: 10.1152/jappl.1987.62.4.1740. [DOI] [PubMed] [Google Scholar]
  32. Wagner P. D., Hedenstierna G., Bylin G. Ventilation-perfusion inequality in chronic asthma. Am Rev Respir Dis. 1987 Sep;136(3):605–612. doi: 10.1164/ajrccm/136.3.605. [DOI] [PubMed] [Google Scholar]
  33. Wagner P. D., Laravuso R. B., Uhl R. R., West J. B. Continuous distributions of ventilation-perfusion ratios in normal subjects breathing air and 100 per cent O2. J Clin Invest. 1974 Jul;54(1):54–68. doi: 10.1172/JCI107750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wagner P. D., Naumann P. F., Laravuso R. B. Simultaneous measurement of eight foreign gases in blood by gas chromatography. J Appl Physiol. 1974 May;36(5):600–605. doi: 10.1152/jappl.1974.36.5.600. [DOI] [PubMed] [Google Scholar]
  35. Wagner P. D., Saltzman H. A., West J. B. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol. 1974 May;36(5):588–599. doi: 10.1152/jappl.1974.36.5.588. [DOI] [PubMed] [Google Scholar]
  36. Wagner P. D., Smith C. M., Davies N. J., McEvoy R. D., Gale G. E. Estimation of ventilation-perfusion inequality by inert gas elimination without arterial sampling. J Appl Physiol (1985) 1985 Aug;59(2):376–383. doi: 10.1152/jappl.1985.59.2.376. [DOI] [PubMed] [Google Scholar]
  37. Wagner P. D. Susceptibility of different gases to ventilation-perfusion inequality. J Appl Physiol Respir Environ Exerc Physiol. 1979 Feb;46(2):372–386. doi: 10.1152/jappl.1979.46.2.372. [DOI] [PubMed] [Google Scholar]
  38. Wagner P. D., Sutton J. R., Reeves J. T., Cymerman A., Groves B. M., Malconian M. K. Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt. Everest. J Appl Physiol (1985) 1987 Dec;63(6):2348–2359. doi: 10.1152/jappl.1987.63.6.2348. [DOI] [PubMed] [Google Scholar]
  39. West J. B. Causes of carbon dioxide retention in lung disease. N Engl J Med. 1971 Jun 3;284(22):1232–1236. doi: 10.1056/NEJM197106032842202. [DOI] [PubMed] [Google Scholar]
  40. West J. B. Ventilation-perfusion inequality and overall gas exchange in computer models of the lung. Respir Physiol. 1969 Jun;7(1):88–110. doi: 10.1016/0034-5687(69)90071-1. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES