Abstract
The release of insulin from the pancreatic beta cell is dependent upon a complex interplay between stimulators and inhibitors. Recently, amylin, a peptide secreted by pancreatic beta cells, has been implicated in the development of type II (noninsulin dependent) diabetes through its modulation of the peripheral effects of insulin. However, the effect of amylin on insulin secretion from the beta cell has remained controversial. It is reported here that in single beta cells exhibiting normal glucose sensing, amylin causes membrane hyperpolarization, increases in net outward current, and reductions in insulin secretion. In contrast, in cells with abnormal glucose sensing (e.g., from db/db diabetic mice), amylin has no effect on electrical activity or secretion. Thus, amylin's effects on excitation-secretion coupling in the beta cell of the pancreas appear to be linked to the cell's capacity for normal glucose sensing.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahrén B., Arkhammar P., Berggren P. O., Nilsson T. Galanin inhibits glucose-stimulated insulin release by a mechanism involving hyperpolarization and lowering of cytoplasmic free Ca2+ concentration. Biochem Biophys Res Commun. 1986 Nov 14;140(3):1059–1063. doi: 10.1016/0006-291x(86)90742-4. [DOI] [PubMed] [Google Scholar]
- Arita J., Kojima Y., Kimura F. Identification by the sequential cell immunoblot assay of a subpopulation of rat dopamine-unresponsive lactotrophs. Endocrinology. 1991 Apr;128(4):1887–1894. doi: 10.1210/endo-128-4-1887. [DOI] [PubMed] [Google Scholar]
- Ashcroft F. M., Ashcroft S. J., Harrison D. E. Properties of single potassium channels modulated by glucose in rat pancreatic beta-cells. J Physiol. 1988 Jun;400:501–527. doi: 10.1113/jphysiol.1988.sp017134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashcroft S. J., Ashcroft F. M. Properties and functions of ATP-sensitive K-channels. Cell Signal. 1990;2(3):197–214. doi: 10.1016/0898-6568(90)90048-f. [DOI] [PubMed] [Google Scholar]
- Boquist L., Hellman B., Lernmark A., Täljedal I. B. Influence of the mutation "diabetes" on insulin release and islet morphology in mice of different genetic backgrounds. J Cell Biol. 1974 Jul;62(1):77–89. doi: 10.1083/jcb.62.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark S. A., Burnham B. L., Chick W. L. Modulation of glucose-induced insulin secretion from a rat clonal beta-cell line. Endocrinology. 1990 Dec;127(6):2779–2788. doi: 10.1210/endo-127-6-2779. [DOI] [PubMed] [Google Scholar]
- Cooper G. J., Willis A. C., Clark A., Turner R. C., Sim R. B., Reid K. B. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8628–8632. doi: 10.1073/pnas.84.23.8628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galeazza M. T., O'Brien T. D., Johnson K. H., Seybold V. S. Islet amyloid polypeptide (IAPP) competes for two binding sites of CGRP. Peptides. 1991 May-Jun;12(3):585–591. doi: 10.1016/0196-9781(91)90106-y. [DOI] [PubMed] [Google Scholar]
- Horn R., Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol. 1988 Aug;92(2):145–159. doi: 10.1085/jgp.92.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson K. H., O'Brien T. D., Betsholtz C., Westermark P. Islet amyloid polypeptide: mechanisms of amyloidogenesis in the pancreatic islets and potential roles in diabetes mellitus. Lab Invest. 1992 May;66(5):522–535. [PubMed] [Google Scholar]
- Lewis C. E., Clark A., Ashcroft S. J., Cooper G. J., Morris J. F. Calcitonin gene-related peptide and somatostatin inhibit insulin release from individual rat B cells. Mol Cell Endocrinol. 1988 May;57(1-2):41–49. doi: 10.1016/0303-7207(88)90030-5. [DOI] [PubMed] [Google Scholar]
- Lukinius A., Wilander E., Westermark G. T., Engström U., Westermark P. Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia. 1989 Apr;32(4):240–244. doi: 10.1007/BF00285291. [DOI] [PubMed] [Google Scholar]
- Meissner H. P., Schmidt H. The electrical activity of pancreatic beta-cells of diabetic mice. FEBS Lett. 1976 Sep 1;67(3):371–374. doi: 10.1016/0014-5793(76)80567-4. [DOI] [PubMed] [Google Scholar]
- Nagamatsu S., Carroll R. J., Grodsky G. M., Steiner D. F. Lack of islet amyloid polypeptide regulation of insulin biosynthesis or secretion in normal rat islets. Diabetes. 1990 Jul;39(7):871–874. doi: 10.2337/diab.39.7.871. [DOI] [PubMed] [Google Scholar]
- Nagamatsu S., Nishi M., Steiner D. F. Effects of islet amyloid polypeptide (IAPP) on insulin biosynthesis or secretion in rat islets and mouse beta TC3 cells. Biosynthesis of IAPP in mouse beta TC3 cells. Diabetes Res Clin Pract. 1992 Jan;15(1):49–55. doi: 10.1016/0168-8227(92)90067-2. [DOI] [PubMed] [Google Scholar]
- Nelson M. T., Huang Y., Brayden J. E., Hescheler J., Standen N. B. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature. 1990 Apr 19;344(6268):770–773. doi: 10.1038/344770a0. [DOI] [PubMed] [Google Scholar]
- Nilsson T., Arkhammar P., Rorsman P., Berggren P. O. Suppression of insulin release by galanin and somatostatin is mediated by a G-protein. An effect involving repolarization and reduction in cytoplasmic free Ca2+ concentration. J Biol Chem. 1989 Jan 15;264(2):973–980. [PubMed] [Google Scholar]
- Nishi M., Sanke T., Nagamatsu S., Bell G. I., Steiner D. F. Islet amyloid polypeptide. A new beta cell secretory product related to islet amyloid deposits. J Biol Chem. 1990 Mar 15;265(8):4173–4176. [PubMed] [Google Scholar]
- Ohsawa H., Kanatsuka A., Yamaguchi T., Makino H., Yoshida S. Islet amyloid polypeptide inhibits glucose-stimulated insulin secretion from isolated rat pancreatic islets. Biochem Biophys Res Commun. 1989 Apr 28;160(2):961–967. doi: 10.1016/0006-291x(89)92529-1. [DOI] [PubMed] [Google Scholar]
- Ono K., Giles W. R. Electrophysiological effects of calcitonin gene-related peptide in bull-frog and guinea-pig atrial myocytes. J Physiol. 1991 May;436:195–217. doi: 10.1113/jphysiol.1991.sp018546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oxford G. S., Wagoner P. K. The inactivating K+ current in GH3 pituitary cells and its modification by chemical reagents. J Physiol. 1989 Mar;410:587–612. doi: 10.1113/jphysiol.1989.sp017550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettersson M., Ahrén B. Calcitonin gene-related peptide inhibits insulin secretion studies on ion fluxes and cyclic AMP in isolated rat islets. Diabetes Res. 1990 Sep;15(1):9–14. [PubMed] [Google Scholar]
- Rasmussen H., Zawalich K. C., Ganesan S., Calle R., Zawalich W. S. Physiology and pathophysiology of insulin secretion. Diabetes Care. 1990 Jun;13(6):655–666. doi: 10.2337/diacare.13.6.655. [DOI] [PubMed] [Google Scholar]
- Rojas E., Hidalgo J., Carroll P. B., Li M. X., Atwater I. A new class of calcium channels activated by glucose in human pancreatic beta-cells. FEBS Lett. 1990 Feb 26;261(2):265–270. doi: 10.1016/0014-5793(90)80568-4. [DOI] [PubMed] [Google Scholar]
- Sala S., Parsey R. V., Cohen A. S., Matteson D. R. Analysis and use of the perforated patch technique for recording ionic currents in pancreatic beta-cells. J Membr Biol. 1991 Jun;122(2):177–187. doi: 10.1007/BF01872640. [DOI] [PubMed] [Google Scholar]
- Silvestre R. A., Peiró E., Dégano P., Miralles P., Marco J. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat pancreas. Regul Pept. 1990 Oct 29;31(1):23–31. doi: 10.1016/0167-0115(90)90192-y. [DOI] [PubMed] [Google Scholar]
- Smith P. A., Ashcroft F. M., Rorsman P. Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. FEBS Lett. 1990 Feb 12;261(1):187–190. doi: 10.1016/0014-5793(90)80667-8. [DOI] [PubMed] [Google Scholar]
- Smith P. A., Rorsman P., Ashcroft F. M. Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic beta-cells. Nature. 1989 Nov 30;342(6249):550–553. doi: 10.1038/342550a0. [DOI] [PubMed] [Google Scholar]
- Suzuki S., Murakami M., Abe S., Satoh Y., Shintani S., Ishizuka J., Suzuki K., Thompson J. C., Toyota T. The effects of amylin on insulin secretion from Rin m5F cells and glycogen synthesis and lipogenesis in rat primary cultured hepatocytes. Diabetes Res Clin Pract. 1992 Jan;15(1):77–84. doi: 10.1016/0168-8227(92)90071-x. [DOI] [PubMed] [Google Scholar]
- Thorens B., Wu Y. J., Leahy J. L., Weir G. C. The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment. J Clin Invest. 1992 Jul;90(1):77–85. doi: 10.1172/JCI115858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokuyama Y., Kanatsuka A., Ohsawa H., Yamaguchi T., Makino H., Yoshida S., Nagase H., Inoue S. Hypersecretion of IAPP from the islets of VMH-lesioned rats and obese Zucker rats. Diabetes Res Clin Pract. 1992 Jan;15(1):23–29. doi: 10.1016/0168-8227(92)90063-w. [DOI] [PubMed] [Google Scholar]
- Zona C., Farini D., Palma E., Eusebi F. Modulation of voltage-activated channels by calcitonin gene-related peptide in cultured rat neurones. J Physiol. 1991 Feb;433:631–643. doi: 10.1113/jphysiol.1991.sp018447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Weille J., Schmid-Antomarchi H., Fosset M., Lazdunski M. ATP-sensitive K+ channels that are blocked by hypoglycemia-inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1312–1316. doi: 10.1073/pnas.85.4.1312. [DOI] [PMC free article] [PubMed] [Google Scholar]