Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Oct 15;90(20):9403–9407. doi: 10.1073/pnas.90.20.9403

Effects of Mn2+ and Mg2+ on assimilation of NO3- and NH4+ by soil microorganisms.

G W McCarty 1, J M Bremner 1
PMCID: PMC47576  PMID: 8415713

Abstract

Although it has been demonstrated that Mn2+ and Mg2+ can influence the activity of glutamine synthetase in various organisms, there is little information concerning the effects of these cations on the activity of this enzyme in soil microorganisms or on ability of these microorganisms to assimilate NO3- and NH4+. We studied the effects of different concentrations of Mn2+ and Mg2+ on assimilatory NO3- reduction and NH4+ assimilation in cultures of two microorganisms commonly found in soil [Pseudomonas fluorescens (ATCC 13525) and Azotobacter chroococcum (ATCC 9043)] and in an enrichment culture of soil microorganisms. We found that Mn2+ strongly inhibited NH4+ assimilation by soil microorganisms and blocked the inhibitory effect of NH4+ on assimilatory NO3- reductase (ANR) activity, thereby uncoupling ANR activity from nitrogen assimilation and causing the NH4+ formed by ANR activity to be released to the environment. Mg2+ counteracted the effect of Mn2+ on microbial metabolism of nitrogen, which suggests that the overall effect of these cations on nitrogen assimilation by soil microorganisms will depend on the ratio of their concentrations in soil.

Full text

PDF
9403

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bengtsson G., Annadotter H. Nitrate reduction in a groundwater microcosm determined by N gas chromatography-mass spectrometry. Appl Environ Microbiol. 1989 Nov;55(11):2861–2870. doi: 10.1128/aem.55.11.2861-2870.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenchley J. E. Effect of methionine sulfoximine and methionine sulfone on glutamate synthesis in Klebsiella aerogenes. J Bacteriol. 1973 May;114(2):666–673. doi: 10.1128/jb.114.2.666-673.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Denman R. B., Wedler F. C. Association-dissociation of mammalian brain glutamine synthetase: effects of metal ions and other ligands. Arch Biochem Biophys. 1984 Aug 1;232(2):427–440. doi: 10.1016/0003-9861(84)90559-9. [DOI] [PubMed] [Google Scholar]
  4. FERNANDEZ C., ALZATE R., LINDSAY J. R. Experimental observations on postural nystagmus in the cat. Trans Am Otol Soc. 1959;47:201–217. [PubMed] [Google Scholar]
  5. Ip S. M., Rowell P., Stewart W. D. The role of specific cations in regulation of cyanobacterial glutamine synthetase. Biochem Biophys Res Commun. 1983 Jul 18;114(1):206–213. doi: 10.1016/0006-291x(83)91614-5. [DOI] [PubMed] [Google Scholar]
  6. Joseph S. K., Bradford N. M., McGivan J. D. Inhibition of glutamine synthetase activity by manganous ions in a cytosol extract of rat liver. Biochem J. 1979 Nov 15;184(2):477–480. doi: 10.1042/bj1840477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. McCarty G. W., Bremner J. M. Inhibition of assimilatory nitrate reductase activity in soil by glutamine and ammonium analogs. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5834–5836. doi: 10.1073/pnas.89.13.5834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McCarty G. W., Bremner J. M. Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonium. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):453–456. doi: 10.1073/pnas.89.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Paneque A., Del Campo F. F., Ramírez J. M., Losada M. Flavin nucleotide nitrate reductase from spinach. Biochim Biophys Acta. 1965 Sep 27;109(1):79–85. doi: 10.1016/0926-6585(65)90092-0. [DOI] [PubMed] [Google Scholar]
  10. Patrick W. H., Turner F. T. Effect of redox potential on manganese transformation in waterlogged soil. Nature. 1968 Nov 2;220(5166):476–478. doi: 10.1038/220476a0. [DOI] [PubMed] [Google Scholar]
  11. Segal A., Stadtman E. R. Variation of the conformational states of Escherichia coli glutamine synthetase by interaction with different divalent cations. Arch Biochem Biophys. 1972 Sep;152(1):367–377. doi: 10.1016/0003-9861(72)90226-3. [DOI] [PubMed] [Google Scholar]
  12. Sias S. R., Ingraham J. L. Isolation and analysis of mutants of Pseudomonas aeruginosa unable to assimilate nitrate. Arch Microbiol. 1979 Sep;122(3):263–270. doi: 10.1007/BF00411289. [DOI] [PubMed] [Google Scholar]
  13. Streicher S. L., Tyler B. Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacterium Streptomyces cattleya. Proc Natl Acad Sci U S A. 1981 Jan;78(1):229–233. doi: 10.1073/pnas.78.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wedler F. C., Denman R. B. Glutamine synthetase: the major Mn(II) enzyme in mammalian brain. Curr Top Cell Regul. 1984;24:153–169. doi: 10.1016/b978-0-12-152824-9.50021-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES