Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2016 Feb 18;4(1):e01747-15. doi: 10.1128/genomeA.01747-15

Draft Whole-Genome Sequence of Trichoderma gamsii T6085, a Promising Biocontrol Agent of Fusarium Head Blight on Wheat

Riccardo Baroncelli 1, Antonio Zapparata 1, Giulia Piaggeschi 1, Sabrina Sarrocco 1,, Giovanni Vannacci 1
PMCID: PMC4759075  PMID: 26893428

Abstract

Trichoderma gamsii T6085 is a promising beneficial isolate whose effects consist of growth inhibition of the main agents causing Fusarium head blight, reduction of mycotoxin accumulation, competition for wheat debris, and reduction of the disease in both the lab and the field. Here, we present the first genome assembly of a T. gamsii isolate, providing a useful platform for the scientific community.

GENOME ANNOUNCEMENT

Fusarium head blight (FHB) is one of the most important diseases of wheat, caused by a complex of Fusarium species, including F. graminearum and F. culmorum. The most serious consequence of FHB is the contamination of grain and cereal products with mycotoxins, with deoxynivalenol (DON) and its acetylated derivatives, 3- and 15-acetyl-DON, as the most frequently encountered trichothecene in FHB of wheat throughout Europe (1). Different strategies are used to reduce the impact of FHB, such as crop rotation, tillage practices, fungicide application, and resistant cultivars, but none of these by itself is able to reduce the impact of the disease. In this context, biological control offers, by the use of beneficial fungi, such as Trichoderma spp., a promising alternative for the management of FHB (24).

Trichoderma gamsii T6085 has been studied for many years by our research group for its ability to control FHB on wheat. From experimental data collected since then, T6085 resulted in being effective against F. graminearum and F. culmorum by inhibiting their growth (5), reducing mycotoxin contamination, particularly that of DON, and controlling the disease in both the lab and the field (6, 7). T6085 also was a good competitor against F. graminearum for cultural debris (8).

T. gamsii T6085 was sequenced using Illumina mate-paired sequencing technology by the Génome Québec Innovation Centre, part of McGill University (Canada). Mate-paired reads of 250 bp (3.80 Gbp total; average coverage, 100×) were assembled using Velvet 1.2.08 (9). The draft genome of T. gamsii consists of 381 scaffolds, with a total assembly length of 37.97 Mbp (N50, 417,961 bp; N90, 106,959 bp), 49.00% G+C content, and a maximum scaffold size of 1,198,811 bp. The completeness of the assembly was assessed using CEGMA version 2.4 (10), which estimated the genome sequence to be 97.58% complete based on full and partial targets. The nuclear genome was annotated using the MAKER2 pipeline (11). Overall, 10,944 protein-coding genes were predicted. Analysis with WolfPSORT (9) revealed that 1,356 predicted proteins (12.39% of the proteome) contain secretion signal peptides; those values are comparable to what has been reported for other Trichoderma genomes (12). A first comparative analysis within Trichoderma spp. (12, 13) and model organisms with publicly available genomes (Fusarium [14], Neurospora [15], Colletotrichum [16, 17], Magnaporthe [18], Clonostachys [19], and Verticillium (20)] suggested that T. gamsii T6085 contains a large number of specific carbohydrate-active enzymes (CAZy), such as GH30, GH2, GH13, and GH5, cerato-ulmin hydrophobin, proteinase inhibitor, peptidases, such as G1 and S53, and glucose/ribitol dehydrogenase enzymes. The genome sequence of T. gamsii T6085 represents a new resource that is useful for further research into the genetic bases of Fusarium head blight biological control by Trichoderma species.

Nucleotide sequence accession numbers.

This whole-genome shotgun project has been deposited in GenBank under the accession no. JPDN00000000 (BioProject PRJNA252048). The version described in this paper is JPDN00000000.1.

ACKNOWLEDGMENT

We thank Michael Thon’s group and the CIALE (University of Salamanca) for providing computer facilities.

Footnotes

Citation Baroncelli R, Zapparata A, Piaggeschi G, Sarrocco S, Vannacci G. 2016. Draft whole-genome sequence of Trichoderma gamsii T6085, a promising biocontrol agent of Fusarium head blight on wheat. Genome Announc 4(1):e01747-15. doi:10.1128/genomeA.01747-15.

REFERENCES

  • 1.Bottalico A, Perrone G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108:611–624. doi: 10.1023/A:1020635214971. [DOI] [Google Scholar]
  • 2.Sarrocco S, Guidi L, Fambrini S, Degl’Innocenti E, Vannacci G. 2009. Competition for cellulose exploitation between Rhizoctonia solani and two Trichoderma isolates in the decomposition of wheat straw. J Plant Pathol 91:331–338. [Google Scholar]
  • 3.Sarrocco S, Matarese F, Moretti A, Haidukowski M, Vannacci G. 2012. DON on wheat crop residues: effects on mycobiota as a source of potential antagonists of Fusarium culmorum. Phytopathologia Mediterranea 51:225–235. [Google Scholar]
  • 4.Karlsson M, Durling MB, Choi J, Kosawang C, Lackner G, Tzelepis GD, Nygren K, Mukesh K, Dubey M, Kamou N, Levasseur A, Zapparata A, Wang J, Jensen B, Sarrocco S, Panteris E, Lagopodi AL, Pöggeler S, Vannacci G, Collinge DB. 2015. Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biol Evol 7:465–480 doi: 10.1093/gbe/evu292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Matarese F, Sarrocco S, Gruber S, Seidl-Seiboth V, Vannacci G. 2012. Biocontrol of Fusarium head blight: interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 158:98–106. doi: 10.1099/mic.0.052639-0. [DOI] [PubMed] [Google Scholar]
  • 6.Perotto S, Angelini P, Bianciotto V, Bonfante P, Girlanda M, Kull T, Mello A, Pecoraro L, Perini C, Persiani AM, Saitta A, Sarrocco S, Vannacci G, Venanzoni R, Venturella G, Selosse MA. 2013. Interactions of fungi with other organisms. Plant Biosyst 147:208–218. doi: 10.1080/11263504.2012.753136. [DOI] [Google Scholar]
  • 7.Sarrocco S, Matarese F, Moncini L, Pachetti G, Ritieni A, Moretti A, Vannacci G. 2013. Biocontrol of Fusarium head blight by spike application of Trichoderma gamsii. J Plant Pathol S1:19–27. [Google Scholar]
  • 8.Sarrocco S, Baroncelli R, Zapparata A, Piaggeschi G, Valenti F, Vannacci G. 2015. Beneficial fungi to improve food security: from the genome to the field on the highway of sustainability. J Food Process Technol 6:8. doi: 10.4172/2157-7110.S1.024. [DOI] [Google Scholar]
  • 9.Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi: 10.1101/gr.074492.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Parra G, Bradnam K, Korf I. 2007. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23:1061–1067. doi: 10.1093/bioinformatics/btm071. [DOI] [PubMed] [Google Scholar]
  • 11.Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sánchez Alvarado A, Yandell M. 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18:188–196. doi: 10.1101/gr.6743907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Baroncelli R, Piaggeschi G, Fiorini L, Bertolini E, Zapparata A, Pè ME, Sarrocco S, Vannacci G. 2015. Draft whole-genome sequence of the biocontrol agent Trichoderma harzianum T6776. Genome Announc 3(3):e00647-15. doi: 10.1128/genomeA.00647-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, et al.. 2011. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40. doi: 10.1186/gb-2011-12-4-r40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, Xie X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RA, Chapman S, Coulson R, Coutinho PM, Danchin EG, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee YH, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, et al.. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373. doi: 10.1038/nature08850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, et al.. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868. doi: 10.1038/nature01554. [DOI] [PubMed] [Google Scholar]
  • 16.O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun MH, Lee YH, Miyara I, Moore N, Neumann U, Nordström K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stüber K, et al.. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065. doi: 10.1038/ng.2372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Baroncelli R, Sreenivasaprasad S, Sukno SA, Thon MR, Holub E. 2014. Draft genome sequence of Colletotrichum acutatum sensu lato (Colletotrichum fioriniae). Genome Announc 2(2):e00112-14. doi: 10.1128/genomeA.00112-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986. doi: 10.1038/nature03449. [DOI] [PubMed] [Google Scholar]
  • 19.Karlsson M, Durling MB, Choi J, Kosawang C, Lackner G, Tzelepis GD, Nygren K, Dubey MK, Kamou N, Levasseur A, Zapparata A, Wang J, Amby DB, Jensen B, Sarrocco S, Panteris E, Lagopodi AL, Pöggeler S, Vannacci G, Collinge DB, Hoffmeister D, Henrissat B, Lee YH, Jensen DF. 2015. Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biol Evol 7:465–480. doi: 10.1093/gbe/evu292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BP, Chen Z, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ. 2011. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog. 7:e1002137. doi: 10.1371/journal.ppat.1002137. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES